
ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300 fax 650 969-9131

Sun Microsystems, Inc.

Mobile Information Device
Profile (JSR-37)
JCP Specification

Java 2 Platform, Micro Edition, 1.0a

1.0a, December 15, 2000

Copyright Notice

Copyright © 1999-2000 Sun Microsystems, Inc.

901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR
52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and
DFAR 227.7202-1(a).
TRADEMARKS

Sun, the Sun logo, Sun Microsystems, J2SE, J2EE, J2ME, Java, Solaris, and the Java Cof-
fee Cup logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPO-
GRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFOR-
MATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 Mobile Information Device Profile (JSR-37) iii

Contents

Preface 13

1. Introduction and Background 17

1.1 Introduction 17

1.2 Background 17

1.3 Document Conventions 19

1.3.1 Definitions 19

1.3.2 Formatting Conventions 19

2. Requirements and Scope 21

2.1 Requirements 21

2.1.1 Hardware 21

2.1.2 Software 22

2.2 Scope 23

3. Architecture 25

3.1 Overview 25

3.2 Architecture 25

4. System Functions 29

4.1 Overview 29

4.2 System Properties 29

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

iv Mobile Information Device Profile (JSR-37) December 15, 2000

4.3 Application Resource Files 30

4.4 System.exit 30

4.5 Runtime.exit 30

5. Timers 31

5.1 Overview 31

5.2 Timers 31

6. Networking 33

6.1 Overview 33

6.2 HttpConnection 34

6.2.1 HTTP Request Headers 35

6.3 DatagramConnection 36

7. Persistent Storage 37

7.1 Overview 37

7.2 Record Store 37

7.3 Records 38

8. Applications 39

8.1 Overview 39

8.2 MIDP MIDlet Suite 39

8.3 MIDP Execution Environment 40

8.4 MIDlet Suite Packaging 41

8.4.1 JAR Manifest 43

8.4.2 MIDlet Classes 44

8.5 Application Descriptor 44

8.6 Application Lifecycle 46

9. User Interface 49

9.1 Overview 49

9.2 Structure of the MIDP UI API 50

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 Mobile Information Device Profile (JSR-37) v

9.2.1 Class Hierarchy 51

9.2.2 Class Overview 52

9.2.3 Interplay with Application Manager 52

9.3 Event Handling 53

9.3.1 Abstract Commands 53

9.3.2 High-Level API for Events 54

9.3.3 Low-Level API for Events 55

9.3.4 Interplay of High-Level Commands and the Low-Level API 57

9.4 Graphics and Text in Low-Level API 57

9.4.1 The Redrawing Scheme 57

9.4.2 Drawing Model 58

9.4.3 Coordinate System 59

9.4.4 Font Support 59

9.4.5 Drawing Text and Images 60

9.5 A Note on Concurrency 62

9.6 Implementation Notes 63

A. Implementation Notes 65

B. java.lang 71

B.1. IllegalStateException 73

C. java.util 75

C.1. Timer 77

C.2. TimerTask 83

D. javax.microedition.rms 85

D.1. InvalidRecordIDException 91

D.2. RecordComparator 93

D.3. RecordEnumeration 95

D.4. RecordFilter 99

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

vi Mobile Information Device Profile (JSR-37) December 15, 2000

D.5. RecordListener 101

D.6. RecordStore 103

D.7. RecordStoreException 111

D.8. RecordStoreFullException 113

D.9. RecordStoreNotFoundException 115

D.10. RecordStoreNotOpenException 117

E. javax.microedition.midlet 119

E.1. MIDlet 125

E.2. MIDletStateChangeException 129

F. javax.microedition.io 131

F.1. HttpConnection 133

G. javax.microedition.lcdui 151

G.1. Alert 153

G.2. AlertType 158

G.3. Canvas 160

G.4. Choice 174

G.5. ChoiceGroup 180

G.6. Command 186

G.7. CommandListener 192

G.8. DateField 193

G.9. Display 197

G.10. Displayable 203

G.11. Font 205

G.12. Form 212

G.13. Gauge 218

G.14. Graphics 221

G.15. Image 237

G.16. ImageItem 242

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 Mobile Information Device Profile (JSR-37) vii

G.17. Item 246

G.18. ItemStateListener 247

G.19. List 248

G.20. Screen 255

G.21. StringItem 257

G.22. TextBox 259

G.23. TextField 265

G.24. Ticker 272

Index 275

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

viii Mobile Information Device Profile (JSR-37) December 15, 2000

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 Mobile Information Device Profile (JSR-37) ix

List of Tables

TABLE P-1. Revision History .. 13
TABLE 1-1. Specification Terms... 19
TABLE 1-2. Formatting Conventions .. 19
TABLE 3-1. MID Application Types... 27
TABLE 4-1. System Properties Defined by MIDP .. 29
TABLE 6-1. System Properties Used for User-Agent Request Header 36
TABLE 8-1. MIDlet Attributes .. 42
TABLE 8-2. Classes in the javax.microedition.midlet Package 47
TABLE A-1. Possible Classes of MIDlets .. 66
TABLE A-2. Typical MIDlet Management Software Operations 67

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

x Mobile Information Device Profile (JSR-37) December 15, 2000

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 Mobile Information Device Profile (JSR-37) xi

List of Figures

FIGURE 3-1. High-Level Architecture View .. 26
FIGURE 6-1. HTTP Network Connection... 34

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

xii Mobile Information Device Profile (JSR-37) December 15, 2000

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

13

Preface

This document, Mobile Information Device Profile (JSR-37) Specification, defines the
Mobile Information Device Profile (MIDP) for JavaTM 2 Platform, Micro Edition (J2METM).

Revision History

TABLE P-1 Revision History

Date Version Description

Dec. 15, 2000 1.0a Added ammended copyright.
Added HTML version of Javadocs to download package.
No changes to specification.

Sept. 1, 2000 1.0 Incorporated suggestions, changes, and defects from final
public review.

July 14, 2000 0.95 Proposed final specification.
Incorporates comments from public review.
Sound API added.

May 5, 2000 0.9 First release for Public Draft.
Changes incorporated from MIDPEG meeting (April 13–
14).

April 13, 2000 0.8 Interim draft for MIDPEG internal review.

Mar. 21, 2000 0.7 Minor revisions for first release of Participant Draft.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

14 Mobile Information Device Profile (JSR-37) December 15, 2000

Mar. 10, 2000 0.6 Preparing for Participant Draft. Addressed all comments
from third meeting of the MIDPEG.
Fixed minor formatting errors.
Re-ordered chapters to move new APIs toward back of
book.
All changes marked with change bars.

Feb. 25, 2000 0.5 Final draft for MIDPEG meeting (Mar 2–3, 2000).
Comments from MIDPEG incorporated. All revisions
marked with chambers.

Feb. 18, 2000 0.4 Revisions now marked with change bars.
Chapter 3, “Architecture” fleshed out.
“javax.microedition.rms” on page 85 added.

Feb. 11, 2000 0.3 Revisions and addition of following material:
Added Chapter 7, “Persistent Storage”

Feb. 4, 2000 0.2 Revisions and addition of the following material:
Chapter 8, “Applications”
Chapter 6, “Networking”
Chapter 4, “System Functions”
Chapter 5, “Timers”

Jan. 28, 2000 0.1 Initial release:
Chapter 1, “Introduction and Background”
Chapter 2, “Requirements and Scope”
Chapter 3, “Architecture”

TABLE P-1 Revision History

Date Version Description

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 Preface 15

Who Should Use This Specification
The audience for this document is the Java Community Process (JCP) expert group defining
this profile, implementors of the MIDP, and application developers targeting the MIDP.

A profile of J2ME defines device-type-specific sets of APIs for a particular vertical market
or industry. Profiles are more exactly defined in the related publication, Configurations and
Profiles Architecture Specification, Sun Microsystems, Inc.

How This Specification Is Organized
The topics in this specification are organized according to the following chapters:

Chapter 1, “Introduction and Background,” provides a context for the MID Profile and
defines key terms used in this specification.

Chapter 2, “Requirements and Scope,” defines the scope of the specification and lists the
requirements.

Chapter 3, “Architecture,” defines the high-level architecture of the MIDP.

Chapter 4, “System Functions,” defines how the MIDP extends or modifies APIs from the
CLDC.

Chapter 5, “Timers,” defines the MIDP APIs for calendar and time functions.

Chapter 6, “Networking,” defines the networking APIs of the MIDP.

Chapter 7, “Persistent Storage,” defines the storage APIs for the MIDP.

Chapter 8, “Applications,” defines the concept of a MIDP application and provides an
overview to the associated APIs.

Chapter 9, “User Interface,” defines the graphical user interface APIs for the MIDP.

Appendix A, “Implementation Notes,” discusses implementation issues for OEMs and
developers.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

16 Mobile Information Device Profile (JSR-37) December 15, 2000

Related Literature
The Java Language Specification by James Gosling, Bill Joy, and Guy L. Steele. Addison-
Wesley, 1996, ISBN 0-201-63451-1

The Java Virtual Machine Specification (Java Series), Second Edition by Tim Lindholm
and Frank Yellin. Addison-Wesley, 1999, ISBN 0-201-43294-3

Connected, Limited Device Configuration (JSR-30), Sun Microsystems, Inc.

http://java.sun.com/jcp/final/jsr030/index.html
http://java.sun.com/jcp/final/jsr030/index.html

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

17

CHAPTER 1

Introduction and Background

1.1 Introduction
This document, produced as a result of Java Specification Request (JSR) 37, defines the
Mobile Information Device Profile (MIDP) for the Java 2 Platform, Micro Edition (J2ME™).
The goal of this specification is to define the architecture and the associated APIs required to
enable an open, third-party, application development environment for mobile information
devices, or MIDs.

The MIDP is designed to operate on top of the Connected Limited Device Configuration
(CLDC) which is described in Connected, Limited Device Configuration (JSR-30), Sun
Microsystems, Inc.

1.2 Background
This specification was produced by the Mobile Information Profile Expert Group (MIDPEG).
The following companies, listed in alphabetical order, are members of the MIDPEG:
• America Online

• DDI
• Ericsson
• Espial Group, Inc.
• Fujitsu
• Hitachi

• J-Phone

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

18 Mobile Information Device Profile (JSR-37) December 15, 2000

• Matsushita
• Mitsubishi
• Motorola, Inc.1

• NEC
• Nokia2

• NTT DoCoMo
• Palm
• Research In Motion
• Samsung
• Sharp
• Siemens

• Sony
• Sun Microsystems, Inc.3

• Symbian
• Telcordia Technologies, Inc.

1. Overall specification lead.

2. User-interface API leader.

3. Networking, persistent-storage, system, internationalization/localization, and timer API leader.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 19

1.3 Document Conventions

1.3.1 Definitions
This document uses definitions based upon those specified in RFC 2119 (See http://
www.ietf.org)

1.3.2 Formatting Conventions
This specification uses the following formatting conventions.

TABLE 1-1 Specification Terms

Term Definition

MUST The associated definition is an absolute requirement of this specification.

MUST NOT The definition is an absolute prohibition of this specification.

SHOULD Indicates a recommended practice. There may exist valid reasons in
particular circumstances to ignore this recommendation, but the full
implications must be understood and carefully weighed before choosing a
different course.

SHOULD NOT Indicates a non-recommended practice. There may exist valid reasons in
particular circumstances when the particular behavior is acceptable or even
useful, but the full implications should be understood and the case
carefully weighed before implementing any behavior described with this
label.

MAY Indicates that an item is truly optional.

TABLE 1-2 Formatting Conventions

Convention Description

Courier New Used in all Java code including keywords, data types, constants,
method names, variables, class names, and interface names.

Italic Used for emphasis and to signify the first use of a term.

http://www.ietf.org
http://www.ietf.org

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

20 Mobile Information Device Profile (JSR-37) December 15, 2000

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

21

CHAPTER 2

Requirements and Scope

2.1 Requirements
The requirements listed in this chapter are additional requirements above those found in
Connected, Limited Device Configuration (JSR-30), Sun Microsystems, Inc.

At a high level, the MIDP specification assumes that the MID is limited in its processing
power, memory, connectivity, and display size.

2.1.1 Hardware
As mentioned before, the main goal of the MIDPEG is to establish an open, third-party
application development environment for MIDs. To achieve this goal, the MIDPEG has
defined a MID to be a device that SHOULD have the following minimum characteristics:1

• Display:
• Screen-size: 96x54

• Display depth: 1-bit
• Pixel shape (aspect ratio): approximately 1:1

• Input:
• One or more of the following user-input mechanisms: “one-handed keyboard,”2 “two-

handed keyboard,”3 or touch screen
• Memory:

1. Memory requirements cited here are for MIDP components only. CLDC and other system software memory
requirements are beyond the scope of this specification and therefore not included.

2. A “one-handed” keyboard is a term used to describe an ITU-T phone keypad.

3. A “two-handed” keyboard is a term used to describe a QWERTY keyboard.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

22 Mobile Information Device Profile (JSR-37) December 15, 2000

• 128 kilobytes of non-volatile memory4 for the MIDP components
• 8 kilobytes of non-volatile memory for application-created persistent data
• 32 kilobytes of volatile memory5 for the Java runtime (e.g., the Java heap)

• Networking:
• Two-way, wireless, possibly intermittent, with limited bandwidth

Examples of MIDs include, but are not restricted to, cellular phones, two-way pagers, and
wireless-enabled personal digital assistants (PDAs).

2.1.2 Software
For devices with the aforementioned hardware characteristics, there is still a broad range of
possible system software capabilities. Unlike the consumer desktop computer model where
there are large, dominant system software architectures, the MID space is characterized by a
wide variety of system software. For example, some MIDs may have a full-featured
operating system that supports multi-processing6 and hierarchical filesystems, while other
MIDs may have small, thread-based operating systems with no notion of a filesystem. Faced
with such variety, the MIDP makes minimal assumptions about the MID’s system software.
These requirements are as follows:
• A minimal kernel to manage the underlying hardware (i.e., handling of interrupts,

exceptions, and minimal scheduling). This kernel must provide at least one schedulable
entity to run the Java Virtual Machine (JVM). The kernel does not need to support
separate address spaces (or processes) or make any guarantees about either real-time
scheduling or latency behavior.

• A mechanism to read and write from non-volatile memory to support the APIs discussed
in Chapter 7, “Persistent Storage.”

• Read and write access to the device’s wireless networking to support the APIs discussed
in Chapter 6, “Networking.”

• A mechanism to provide a time base for use in timestamping the records written to
persistent storage (see Chapter 7, “Persistent Storage”) and to provide the basis of the
APIs in Chapter 5, “Timers.”

• A minimal capability to write to a bit-mapped graphics display.
• A mechanism to capture user input from one (or more) of the three input mechanisms

previously discussed (see “Hardware” on page 21).

4. Non-volatile means that the memory is expected to retain its contents between the user turning the devices “off” and
“on”. For the purposes of this specification, it is assumed that non-volatile memory is usually accessed in read mode, and
that special setup may be required to write to it. Examples of non-volatile memory include ROM, flash, and battery-
backed SDRAM. This specification does not define which memory technology a device must have, nor does it define the
behavior of such memory in a power-loss scenario.

5. Volatile means that the memory that is not expected to retain its contents between the user turning the device “off” and
“on”. For the purpose of this specification, it is assumed that volatile memory accesses are evenly split between reads and
writes, and no special setup is required to access it. The most common type of volatile memory is DRAM.

6. The ability to run multiple, concurrent processes, each with a separate and distinct memory map.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 23

• A mechanism for managing the application life-cycle of the device. More information on
application management can be found in “Implementation Notes” on page 65.

2.2 Scope
MIDs span a potentially wide set of capabilities. Rather than try to address all such
capabilities, the MIDPEG agreed to limit the set of APIs specified, addressing only those
APIs that were considered absolute requirements to achieve broad portability. These APIs
are:
• Application (i.e., defining the semantics of a MIDP application and how it is controlled)

• User interface, or UI (includes display and input)
• Persistent storage
• Networking
• Timers

These APIs are discussed later in this document.

By the same reasoning, some areas of functionality were considered to be outside the scope
of the MIDP. These areas include:
• System-level APIs: The emphasis on the MIDP APIs is, again, on enabling application

programmers, rather than enabling system programming. Thus, low-level APIs that
specify a system interface to a MID’s power management or voice CODECs are beyond
the scope of this specification.

• Application delivery and management: While it is assumed that a MIDP-compliant
device will support dynamic application downloading, the diversity of the worldwide
wireless infrastructure makes it impractical to specify how the application download
occurs. For example, in a low-bandwidth wireless network, it may not be practical for
applications to be delivered to the device over the wireless link. Instead, such a device
may opt to enable application downloading via a serial link or other physical links. What
is assumed, however, is that an application running on a MID can access the network
through specified network APIs. How applications are actually stored or installed on a
MID is also beyond the scope of the specification. For a MID that has a full-featured,
hierarchical filesystem, storage and installation is easy to accomplish. On the other hand,
for devices that do not have a filesystem, application storage is much more problematic.

• Low-level security:7 The MIDP specifies no additional low-level security features other
than those provided by the CLDC.

7. Low-level, or VM-level, security ensures that an ill-formed or maliciously-encoded Java class file does not crash the
MID’s Java Virtual Machine.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

24 Mobile Information Device Profile (JSR-37) December 15, 2000

• Application-level security:8 The MIDP’s application model is described in Chapter 8,
“Applications.” Other than the semantics implied by the MIDP application model, the
MIDP specifies no additional application-level security features other than those provided
by the CLDC.

• End-to-end security:9 Given the broad diversity of wireless infrastructure in the world,
the MIDPEG found it impossible to architect a single end-to-end security mechanism.

8. Application-level security defines which APIs that the application can access.

9. End-to-end security establishes a model that guarantees that a transaction initiated on a MID is protected (i.e., encrypted,
etc.) along the entire path from MID to/from the entity providing the services for that transaction.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

25

CHAPTER 3

Architecture

3.1 Overview
This chapter addresses issues that both implementers and developers will encounter when
implementing and developing MIDP. While not comprehensive, this chapter does reflect the
most important issues raised during deliberations of the MIDPEG.

3.2 Architecture
As stated before, the goal of the MIDPEG is to create an open, third-party application
development environment for MIDs. In a perfect world, this specification would only have to
address functionality defined by the MIDP specification. In reality, most devices that
implement the MIDP specification will be, at least initially, devices that exist on the market
today. Figure 3-1 shows a high-level view of how the MIDP fits into a device. Note that not
all devices that implement the MIDP specification will have all the elements shown in this
figure, nor will every device necessarily layer its software as depicted in this figure.

In Figure 3-1, the lowest-level block (MID) represents the Mobile Information Device
hardware. On top of this hardware is the native system software. This layer includes the
operating system and libraries used by the device.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

26 Mobile Information Device Profile (JSR-37) December 15, 2000

Starting at the next level, from left to right, is the next layer of software, the CLDC. This
block represents the K-Virtual Machine (KVM) and associated libraries defined by the
CLDC specification. This block provides the underlying Java functionality upon which
higher-level Java APIs may be built.

FIGURE 3-1 High-Level Architecture View

Two categories of APIs are shown on top of the CLDC:
• MIDP APIs: The set of APIs defined in this document.

• OEM-specific APIs: Given the broad diversity of devices in the MIDP space, it is not
possible to fully address all OEM requirements. These classes may be provided by an
OEM to access certain functionality specific to a given device. These applications may
not be portable to other MIDs.

Note that in the figure, the CLDC is shown as the basis of the MIDP and OEM-specific
APIs. This does not imply that these APIs cannot have native functionality (i.e., methods
declared as native). Rather, the intent of the figure is to show that any native methods on a
MID are actually part of the KVM, which maps the Java-level APIs to the underlying native
implementation.

MID

CLDC

MIDP

MIDP

Applications

OEM-Specific
Classes

OEM-Specific
Applications

Native
Applications

Native System Software

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 27

The top-most blocks in Figure 3-1 represent the application types possible on a MID. A short
description of each application type is shown in Table 3-1.

It is beyond the scope of this specification to address OEM-specific or native applications.

TABLE 3-1 MID Application Types

Application Type Description

MIDP A MIDP application, or MIDlet, is one that uses only the APIs defined
by the MIDP and CLDC specifications. This type of application is the
focus of the MIDP specification and is expected to be the most
common type of application on a MID.

OEM-Specific An OEM-specific application depends on classes that are not part of
the MIDP specification (i.e., the OEM-specific classes). These
applications are not portable across MIDs.

Native A native application is one that is not written in Java and is built on
top of the MID’s existing, native system software.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

28 Mobile Information Device Profile (JSR-37) December 15, 2000

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

29

CHAPTER 4

System Functions

4.1 Overview
The MIDP is based on the Connected, Limited Device Configuration (CLDC). Some features
of the CLDC are modified or extended by the MIDP.

4.2 System Properties
The MIDP defines the following additional property values that MUST be made available to
the application using java.lang.System.getProperty:

Property microedition.locale

The locale property MUST consist of the language, country code, and variant separated by
“-”. For example, “fr-FR” or “en-US.”

The language codes MUST be the lower-case, two-letter codes as defined by ISO-639 (See
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt).

TABLE 4-1 System Properties Defined by MIDP

System Property Description

microedition.locale The current locale of the device (null by default)

microedition.profiles must contain at least “MIDP-1.0”

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

30 Mobile Information Device Profile (JSR-37) December 15, 2000

The country code MUST be the upper-case, two-letter codes as defined by ISO-3166 (See
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html).

4.3 Application Resource Files
Application resource files are accessed using getResourceAsStream(String name) in
java.lang.Class. In the MIDP specification, getResourceAsStream is used to allow
resource files to be retrieved from the MIDlet Suite’s JAR file.

4.4 System.exit
The behavior of java.lang.System.exit MUST throw a
java.lang.SecurityException when invoked by a MIDlet. The only way a MIDlet can
indicate that it is complete is by calling MIDlet.notifyDestroyed.

4.5 Runtime.exit
The behavior of java.lang.Runtime.exit MUST throw a
java.lang.SecurityException when invoked by a MIDlet. The only way a MIDlet can
indicate that it is complete is by calling MIDlet.notifyDestroyed.

http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

31

CHAPTER 5

Timers

5.1 Overview
The MIDP adds functions that allow the application to set and be notified of timers.

5.2 Timers
Applications that need to delay or schedule activities for a later time can use the Timer and
TimerTask classes, including functions for:
• one-time execution
• repeated execution at regular intervals

Classes
• java.util.Timer

• java.util.TimerTask

Please refer to “java.util” on page 75 for details on these APIs.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

32 Mobile Information Device Profile (JSR-37) December 15, 2000

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

33

CHAPTER 6

Networking

6.1 Overview
The MIDP extends the connectivity support provided by the Connected, Limited Device
Configuration (CLDC) with specific functionality for the GenericConnection framework.
The MIDP supports a subset of the HTTP protocol, which can be implemented using both IP
protocols such as TCP/IP and non-IP protocols such as WAP and i-mode, utilizing a gateway
to provide access to HTTP servers on the Internet.

The GenericConnection framework is used to support client-server and datagram
networks. Using only the protocols specified by the MIDP will allow the application to be
portable to all MIDs. MIDP implementations MUST provide support for accessing HTTP 1.1
servers and services.

There are wide variations in wireless networks. It is the joint responsibility of the device and
the wireless network to provide the application service. It may require a gateway that can
bridge between the wireless transports specific to the network and the wired Internet. The
client application and the internet server MUST NOT need to be required to know either that
non-IP networks are being used or the characteristics of those networks. While the client and
server MAY both take advantage of such knowledge to optimize their transmissions, they
MUST NOT be required to do so.

For example, a MID MAY have no in-device support for the Internet Protocol (IP). In this
case, it would utilize a gateway (Figure 6-1) to access the Internet, and the gateway would be
responsible for some services, such as DNS name resolution for Internet URLs. The device
and network may define and implement security and network access policies that restrict
access.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

34 Mobile Information Device Profile (JSR-37) December 15, 2000

FIGURE 6-1 HTTP Network Connection

6.2 HttpConnection
The GenericConnection framework from the CLDC provides the base stream and content
interfaces. The interface HttpConnection provides the additional functionality needed to
set request headers, parse response headers, and perform other HTTP specific functions.
Please refer to “javax.microedition.io” on page 131 for the details of the
javax.microedition.io.HttpConnection API.

The interface MUST support:
• HTTP 1.1

Each device implementing the MIDP MUST support opening connections using the
following URL schemes1:
• “http” as defined by RFC2616 Hypertext Transfer Protocol -- HTTP/1.1

1. RFC2396 Uniform Resource Identifiers (URI): Generic Syntax.

GatewayGateway

MIDMID
http://

MID
http://

MID

Non-IP stack TCP/IP stack

Origin
Server

Gateway

Non-IP transport
for example,

TCP/IP

for example,

TL/PDC-P or WSP

iMode or WAP

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 35

Each device implementing the MIDP MUST support the full specification of RFC2616
HEAD, GET and POST requests. The implementation MUST also support the absolute forms
of URIs.

The implementation MUST pass all request headers supplied by the application and response
headers as supplied by the network server. The ordering of request and response headers
MAY be changed. While the headers may be transformed in transit, they MUST be
reconstructed as equivalent headers on the device and server. Any transformations MUST be
transparent to the application and origin server. The HTTP implementation does not
automatically include any headers. The application itself is responsible for setting any
request headers that it needs.

Connections may be implemented with any suitable protocol providing the ability to reliably
transport the HTTP headers and data.2

6.2.1 HTTP Request Headers
The HTTP 1.1 specification provides a rich set of request and response headers that allow the
application to negotiate the form, format, language, and other attributes of the content
retrieved. In the MIDP, the application is responsible for selection and processing of request
and response headers. Only the User-Agent header is described in detail. Any other header
that is mutually agreed upon with the server may be used.

User-Agent Request Headers

For the MIDP, a simple User-Agent field may be used to identify the current device. As
specified by RFC2616, the field contains blank separated features where the feature contains
a name and optional version number.

The application is responsible for formatting and requesting that the User-Agent field be
included in HTTP requests via the setRequestProperty method in the interface
javax.microedition.io.HttpConnection. It can supply any application-specific
features that are appropriate, in addition to any of the profile-specific request header values
listed below.

Applications are not required to be loaded onto the device using HTTP. But if they are, then
the User-Agent request header should be included in requests to load an application
descriptor or application JAR file onto the device. This will allow the server to provide the
most appropriate application for the device.

2. RFC2616 takes great care to not to mandate TCP streams as the only required transport mechanism.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

36 Mobile Information Device Profile (JSR-37) December 15, 2000

The user-agent field SHOULD contain the following features as defined by system properties
using java.lang.System.getProperty.

Example
User-Agent: Profile/MIDP-1.0 Configuration/CLDC-1.0
Content-Language: en-US

6.3 DatagramConnection
The MIDP specification does not mandate a datagram API/protocol for a MID. MIDs that
implement a datagram API/protocol SHOULD use the GenericConnection framework
(DatagramConnection interface) as defined by the CLDC specification.

TABLE 6-1 System Properties Used for User-Agent Request Header

System Property Description

microedition.profiles The set of profiles supported by this device.
For example, “MIDP-1.0.”

microedition.configuration The J2ME configuration supported by this device.
For example, “CLDC-1.0.”

microedition.locale The name of the current locale on this device.
For example, “en-US.”

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

37

CHAPTER 7

Persistent Storage

7.1 Overview
The MIDP provides a mechanism for MIDlets to persistently store data and retrieve it later.
This persistent storage mechanism, called the Record Management System (RMS), is
modeled after a simple record-oriented database.

7.2 Record Store
A record store consists of a collection of records that will remain persistent across multiple
invocations of a MIDlet. The platform is responsible for making its best effort to maintain
the integrity of the MIDlet’s record stores throughout the normal use of the platform,
including reboots, battery changes, etc.

Record stores are created in platform-dependent locations, which are not exposed to MIDlets.
The naming space for record stores is controlled at the MIDlet suite granularity. MIDlets
within a MIDlet suite are allowed to create multiple record stores, as long as they are each
given different names. When a MIDlet suite is removed from a platform, all record stores
associated with its MIDlets MUST also be removed. These APIs only allow the manipulation
of the MIDlet suite’s own record stores and do not provide any mechanism for record sharing
between MIDlets in different MIDlet suites. MIDlets within a MIDlet suite can access one
another’s record stores directly.

Record store names are case sensitive and may consist of any combination of up to 32
Unicode characters. Record store names MUST be unique within the scope of a given
MIDlet suite. In other words, MIDlets within a MIDlet suite are not allowed to create more

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

38 Mobile Information Device Profile (JSR-37) December 15, 2000

than one record store with the same name; however, a MIDlet in one MIDlet suite is allowed
to have a record store with the same name as a MIDlet in another MIDlet suite. In that case,
the record stores are still distinct and separate.

No locking operations are provided in this API. Record store implementations ensure that all
individual record store operations are atomic, synchronous, and serialized so that no
corruption occurs with multiple accesses. However, if a MIDlet uses multiple threads to
access a record store, it is the MIDlet’s responsibility to coordinate this access, or unintended
consequences may result. For example, if two threads in a MIDlet both call
RecordStore.setRecord() concurrently on the same record, the record store will
serialize these calls properly, and no database corruption will occur as a result. However, one
of the writes will be subsequently overwritten by the other, which may cause problems
within the MIDlet. Similarly, if a platform performs transparent synchronization of a record
store or other access from below, it is the platform’s responsibility to enforce exclusive
access to the record store between the MIDlets and synchronization engine.

This record store API uses long integers for time/date stamps, in the format used by
System.currentTimeMillis(). The record store is time stamped with the last time it was
modified. The record store also maintains a version, which is an integer that is incremented
for each operation that modifies the contents of the record store. These are useful for
synchronization engines as well as applications.

7.3 Records
Records are arrays of bytes. Developers can use DataInputStream and
DataOutputStream as well as ByteArrayInputStream and ByteArrayOutputStream
to pack and unpack different data types into and out of the byte arrays.

Records are uniquely identified within a given record store by their recordId, which is an
integer value. This recordId is used as the primary key for the records. The first record
created in a record store will have recordId equal to 1, and each subsequent recordId will
monotonically increase by one. For example, if two records are added to a record store, and
the first has a recordId of 'n', the next will have a recordId of (n+1). MIDlets can create
other indices by using the RecordEnumeration class.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

39

CHAPTER 8

Applications

8.1 Overview
The MIDP defines an application model to allow the limited resources of the device to be
shared by multiple MIDP applications, or MIDlets. It defines what a MIDlet is, how it is
packaged, what runtime environment is available to the MIDlet, and how it should be behave
so that the device can manage its resources. The application model defines how multiple
MIDlets forming a suite can be packaged together and share resources within the context of
a single Java Virtual Machine. Sharing is feasible with the limited resources and security
framework of the device since they are required to share class files and to be subject to a
single set of policies and controls.

8.2 MIDP MIDlet Suite
A MIDP application MUST use only functionality specified by the MIDP specification as it
is developed, tested, deployed, and run.

The elements of a MIDlet suite are:
• Runtime execution environment
• MIDlet suite packaging

• Application descriptor
• Application lifecycle

Each device is presumed to implement the functions required by its users to install, select,
run, and remove MIDlets. The term application management software is used to refer
collectively to these device specific functions (see Appendix A, “Implementation Notes”).

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

40 Mobile Information Device Profile (JSR-37) December 15, 2000

The application management software provides an environment in which the MIDlet is
installed, started, stopped, and uninstalled. It is responsible for handling errors during the
installation, execution, and removal of MIDlet suites and interacting with the user as needed.
It provides to the MIDlet(s) the Java™ runtime environment required by the MIDP
Specification.

One or more MIDlets MAY be packaged in a single JAR file. Each MIDlet consists of a
class that extends the MIDlet class and other classes as may be needed by the MIDlet. The
manifest in the JAR file identifies for each MIDlet the class implementing the MIDlet, its
name, and icon. The MIDlet is the entity that is launched by the application management
software. When a MIDlet suite is invoked, a Java Virtual Machine is needed on which the
classes can be executed. A new instance of the MIDlet is created by the application
management software and used to direct the MIDlet to start, pause, and destroy itself.

Sharing of data and other information between MIDlets is controlled by the individual APIs
and their implementations. For example, the Record Management System API specifies the
methods that should be used when the record stores associated with a MIDlet suite are shared
among MIDlets.

8.3 MIDP Execution Environment
The MIDP defines the execution environment provided to MIDlets. The execution
environment is shared by all MIDlets within a MIDlet suite, and any MIDlet can interact
with other MIDlets packaged together. The application management software initiates the
applications and makes the following available to the MIDlet:
• Classes and native code that implement the CLDC, including a Java Virtual Machine

• Classes and native code that implement the MIDP runtime
• All classes from a single JAR file for execution
• Non-class files from a single JAR file as resources
• Contents of the descriptor file

The CLDC and Java Virtual Machine provide multi-threading, locking and synchronization,
the execution of byte codes, dispatching of methods, etc. A single VM is the scope of all
policy, naming, and resource management. If a device supports multiple VMs, each may
have its own scope, naming, and resource management policies. CLDC classes MUST NOT
be superceded by MIDlet suite classes.

The MIDP provides the classes that implement the MIDP APIs. MIDP classes MUST NOT
be superceded by MIDlet suite classes.

A single JAR file contains all of the MIDlet’s classes. The MIDlet may load and invoke
methods from any class in the JAR file, in the MIDP, or in the CLDC. All of the classes
within these three scopes are shared in the execution environment of the MIDlets from the

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 41

JAR file. All states accessible via those classes are available to any Java class running on
behalf of the MIDlet. There is a single space containing the objects of all MIDlets, MIDP,
and CLDC in use by the MIDlet suite. The usual Java locking and synchronization primitives
should be used when necessary to avoid concurrency problems. Each library will specify how
it handles concurrency and how the MIDlet should use it to run safely in a multi-threaded
environment.

The class files of the MIDlet are only available for execution and can neither be read as
resources nor extracted for re-use. The implementation of the CLDC may store and interpret
the contents of the JAR file in any manner suitable.

The files from the JAR file that are not Java class files are made available using methods on
java.lang.Class.getResourceAsStream (see “Application Resource Files” on page 30).
For example, the manifest would be available in this manner.

The contents of the MIDlet descriptor file, if it is present, are made available via the
javax.microedition.midlet.MIDlet.getAppProperty method.

8.4 MIDlet Suite Packaging
One or more MIDlets are packaged in a single JAR file that includes:
• A manifest describing the contents
• Java classes for the MIDlet(s) and classes shared by the MIDlets
• Resource files used by the MIDlet(s)

The developer is responsible for creating and distributing the components of the JAR file as
appropriate for the target user, device, network, locale, and jurisdiction. For example, for a
particular locale, the resource files would be tailored to contain the strings and images
needed for that locale.

The JAR manifest defines attributes that are used by the application management software to
identify and install the MIDlet suite and as defaults for attributes not found in the application
descriptor. The attributes are defined for use in both the manifest and the application
descriptor.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

42 Mobile Information Device Profile (JSR-37) December 15, 2000

The predefined attributes listed below allow the application management software to
identify, retrieve, install, and invoke the MIDlet.

TABLE 8-1 MIDlet Attributes

Attribute Name Attribute Description

MIDlet-Name The name of the MIDlet suite that identifies the MIDlets to the
user.

MIDlet-Version The version number of the MIDlet suite. The format is
major.minor.micro as described in the JDK Product Versioning
Specification.1 It can be used by the application management
software for install and upgrade uses, as well as communication
with the user.

1. The Java™ Product Versioning Specification:
http://java.sun.com/products/jdk/1.2/docs/guide/versioning/spec/VersioningSpecification.html

MIDlet-Vendor The organization that provides the MIDlet suite.

MIDlet-Icon The name of a PNG file within the JAR file used to represent the
MIDlet suite. It should be used when the Application Management
Software displays an icon to identify the suite.

MIDlet-Description The description of the MIDlet suite.

MIDlet-Info-URL A URL for information further describing the MIDlet suite.

MIDlet-<n> The name, icon, and class of the nth MIDlet in the JAR file
separated by a comma. The lowest value of <n> MUST be 1 and
consecutive ordinals MUST be used.
1. Name is used to identify this MIDlet to the user.
2. Icon is the name of an image (PNG) within the JAR for the

icon of the nth MIDlet.
3. Class is the name of the class extending the MIDlet class for

the nth MIDlet. The class MUST have a public no-args
constructor.

MIDlet-Jar-URL The URL from which the JAR file can be loaded.

MIDlet-Jar-Size The number of bytes in the JAR file.

MIDlet-Data-Size The minimum number of bytes of persistent data required by the
MIDlet. The device may provide additional storage according to its
own policy. The default is zero.

MicroEdition-Profile The J2ME profile required, using the same format and value as the
System property microedition.profiles (for example
“MIDP-1.0”).

MicroEdition-Configuration The J2ME Configuration required using the same format and value
as the System property microedition.configuration (for
example “CLDC-1.0”).

http://java.sun.com/products/jdk/1.2/docs/guide/versioning/spec/VersioningSpecification.html

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 43

The version number has the format Major.Minor[.Micro] (X.X[.X]), where the .Micro
portion MAY be omitted. (If the .Micro portion is not omitted, then it defaults to zero). In
addition, each portion of the version number is allowed a maximum of two decimal digits
(i.e., 0-99).

For example, 1.0.0 can be used to specify the first version of a MIDlet suite. For each portion
of the version number, leading zeros are not significant. For example, 08 is equivalent to 8.
Also, 1.0 is equivalent to 1.0.0. However, 1.1 is equivalent to 1.1.0, and not 1.0.1.

A missing MIDlet-Version tag is assumed to be 0.0.0, which means that any non-zero
version number is considered as a newer version of the MIDlet suite.

8.4.1 JAR Manifest
The manifest provides information about the contents of the JAR file. JAR file formats and
specifications are available at http://java.sun.com/products/jdk/1.2/docs/guide/jar/index.html.
Refer to the JDK JAR and manifest documentation for the syntax and related details.
Manifest attributes that start with “MIDlet-” and do not duplicate those in the application
descriptor are passed to the MIDlet when requested.

The manifest MUST contain the following attributes:
• MIDlet-Name
• MIDlet-Version

• MIDlet-Vendor
• MIDlet-<n> for each MIDlet
• MicroEdition-Profile
• MicroEdition-Configuration

The manifest MAY contain the following:
• MIDlet-Description
• MIDlet-Icon
• MIDlet-Info-URL
• MIDlet-Data-Size

http://java.sun.com/products/jdk/1.2/docs/guide/jar/index.html

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

44 Mobile Information Device Profile (JSR-37) December 15, 2000

For example, a manifest for a hypothetical suite of card games would look like the following
example:

8.4.2 MIDlet Classes
All Java classes needed by the MIDlet are be placed in the JAR file using the standard
structure, based on mapping the fully qualified class names to directory and file names. Each
period is converted to a forward slash (/) and the .class extension is appended. For
example, a class com.sun.microedition.Test would be placed in the JAR file with the
name com/sun/microedition/Test.class.

8.5 Application Descriptor
The application descriptor is used by the application management software to manage the
MIDlet and is used by the MIDlet itself for configuration specific attributes. Each JAR file
may be accompanied by an application descriptor. The descriptor allows the application
management software on the device to verify that the MIDlet is suited to the device before
loading the full JAR file of the MIDlet suite. It also allows configuration-specific attributes
(parameters) to be supplied to the MIDlet(s) without modifying the JAR file.

To allow the application management software to recognize a file as an application
descriptor, a file extension and MIME type are defined.
• The file extension of an application descriptor file MUST be jad.

• The MIME type of an application descriptor file MUST be
text/vnd.sun.j2me.app-descriptor.

Note – The extension and MIME type MUST be submitted to and approved by the Internet
Assigned Numbers Authority (IANA).

MIDlet-Name: CardGames
MIDlet-Version: 1.1.9
MIDlet-Vendor: CardsRUS
MIDlet-1: Solitaire, /Solitare.png, com.cardsrus.org.Solitare
MIDlet-2: JacksWild, /JacksWild.png, com.cardsrus.org.JacksWild
MicroEdition-Profile: MIDP-1.0
MicroEdition-Configuration: CLDC-1.0

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 45

A predefined set of attributes (Table 8-1) is specified to allow the application management
software to identify, retrieve, and install the MIDlet(s). All attributes appearing in the
descriptor file are made available to the MIDlet(s). The developer may use attributes not
beginning with “MIDlet-” for application-specific purposes. All “MIDlet-” attributes are
provided to the MIDlet(s). Attribute names are case-sensitive and MUST match exactly. The
MIDlet retrieves attributes by name by calling the MIDlet.getAppProperty method.1

The application descriptor MUST contain the following attributes:

• MIDlet-Name
• MIDlet-Version
• MIDlet-Vendor
• MIDlet-Jar-URL
• MIDlet-Jar-Size

The application descriptor MAY contain:
• MIDlet-Description
• MIDlet-Icon
• MIDlet-Info-URL
• MIDlet-Data-Size

• MIDlet specific attributes that do not begin with “MIDlet-”

The mandatory attributes MIDlet-Name, MIDlet-Version, and MIDlet-Vendor MUST be
duplicated in the descriptor and manifest files. If they are not identical, then the JAR MUST
NOT be installed. While duplication of other attributes is not required, their values MAY
differ even though both the manifest and descriptor files contain the same attribute. In this
case, the value from the descriptor file will override the value from the manifest file.

Generally speaking, the format of the application descriptor is a sequence of lines consisting
of an attribute name followed by a colon, the value of the attribute, and a carriage return.
White space is ignored before and after the value. The order of the attributes is arbitrary.

The application descriptor MAY be encoded for transport or storage and MUST be decoded
to Unicode before parsing, using the rules below. For example, an ISO8859-1 encoded file
would need to be read through the equivalent of java.io.InputStreamReader with the
appropriate encoding. Descriptors retrieved via HTTP, if that is supported, should use the
standard HTTP content negotiation mechanisms, such as the Content-Encoding header and
the Content-Type charset parameter to decode the stream to Unicode.

1. See “public final String getAppProperty (String key)” on page 126.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

46 Mobile Information Device Profile (JSR-37) December 15, 2000

BNF for Parsing Application Descriptors

For example, an application descriptor for a hypothetical suite of card games would look
look like the following example:

8.6 Application Lifecycle
Each MIDlet MUST extend the MIDlet class. The MIDlet class allows for the orderly
starting, stopping, and cleanup of the MIDlet. The MIDlet can request the arguments from
the application descriptor to communicate with the application management software. A
MIDlet suite MUST NOT have a public static void main() method. If it exists, it
MUST be ignored by the application management software. The application management
software provides the initial class needed by the CLDC to start a MIDlet.

appldesc: *attrline
attrline: attrname ":" WSP attrvalue WSP newline

attrname: 1*<any Unicode char except CTLs or separators>
attrvalue: *valuechar | valuechar *(valuechar | WSP) valuechar
valuechar: <any valid Unicode character, excluding CTLS and WSP>

newline: CR LF | LF
CR = <Unicode carriage return (0x000D)>
LF = <Unicode linefeed (0x000a)>

WSP: 1*(SP | HT)
SP = <Unicode space (0x0020)>
HT = <Unicode horizontal-tab (0x0009)>
CTL = <Unicode characters 0x0000 - 0x001F and 0x007F>
separators = "(" | ")" | "<" | ">" | "@"

| "," | ";" | ":" | "'" | <">
| "/" | "[" | "]" | "?" | "="
| "{" | "}" | SP | HT

MIDlet-Name: CardGames
MIDlet-Version: 1.1.9
MIDlet-Vendor: CardsRUS
MIDlet-Jar-URL: http://www.cardsrus.com/games/cardgames.jar
MIDlet-Jar-Size: 7378
MIDlet-Data-Size: 256

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 47

When a MIDlet suite is installed on a device, its classes, resource files, arguments, and
persistent storage are kept on the device and ready for use. The MIDlet(s) are available to the
user via the device’s application management software.

When the MIDlet is run, an instance of the MIDlet’s primary class is created using its public
no-argument constructor, and the methods of the MIDlet are called to sequence the MIDlet
through its various states. The MIDlet can either request changes in state or notify the
application management software of state changes via the MIDlet methods. When the
MIDlet is finished or terminated by the application management software, it is destroyed,
and the resources it used can be reclaimed, including any objects it created and its classes.
The MIDlet MUST NOT call System.exit, which will throw a SecurityException when
called by a MIDlet. For a complete description of the classes and state changes, see
“javax.microedition.midlet” on page 119.

The normal states of Java classes are not affected by these classes as they are loaded.
Referring to any class will cause it to be loaded, and the normal static initialization will
occur.

TABLE 8-2 Classes in the javax.microedition.midlet Package

Class in javax.microedition.midlet Description

MIDlet Extended by a MIDlet to allow the application
management software to start, stop, and destroy it.

MIDletStateChangeException Thrown when the application cannot make the change
requested.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

48 Mobile Information Device Profile (JSR-37) December 15, 2000

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

49

CHAPTER 9

User Interface

9.1 Overview
The main criteria for the MIDP have been drafted with mobile information devices in mind
(i.e., high-end mobile phones and pagers). These devices differ from desktop systems in
many ways, especially how the user interacts with them. The following UI-related
requirements are important when designing the user interface API:
• The devices and applications should be useful to users who are not necessarily experts in

using computers.
• The devices and applications should be useful in situations where the user cannot pay full

attention to the application. For example, many phone-type devices will be operated with
one hand.

• The form factors and UI concepts of the device differ between devices, especially from
desktop systems. For example, the display sizes are smaller, and the input devices do not
always include pointing devices.

• The applications run on MIDs should have UIs that are compatible to the native
applications so that the user finds them easy to use.

Given the capabilities of devices that will implement the MIDP (see Chapter 2,
“Requirements and Scope”) and the above requirements, the MIDPEG decided not to simply
subset the existing Java UI, which is the Abstract Windowing Toolkit (AWT). Reasons for
this decision include:
• Although AWT was designed for desktop computers and optimized to these devices, it

also suffers from assumptions based on this heritage.
• When a user interacts with AWT, event objects are created dynamically. These objects are

short-lived and exist only until each associated event is processed by the system. At this
point, the event object becomes garbage and must be reclaimed by the system’s garbage
collector. The limited CPU and memory subsystems of a MID typically cannot handle this
behavior.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

50 Mobile Information Device Profile (JSR-37) December 15, 2000

• AWT has a rich but desktop-based feature set. This feature set includes support for
features not found on MIDs. For example, AWT has extensive support for window
management (e.g., overlapping windows, window resize, etc.). MIDs have small displays
which are not large enough to display multiple overlapping windows. The limited display
size also makes resizing a window impractical. As such, the windowing and layout
manager support within AWT is not required for MIDs.

• AWT assumes certain user interaction models. The component set of AWT was designed
to work with a pointer device (e.g., a mouse or pen input). As mentioned earlier, this
assumption is valid for only a small subset of MIDs since many of these devices have
only a keypad for user input.

9.2 Structure of the MIDP UI API
The MIDP UI is logically composed of two APIs: the high-level and the low-level.

The high-level API is designed for business applications whose client parts run on MIDs. For
these applications, portability across devices is important. To achieve this portability, the
high-level API employs a high level of abstraction and provides very little control over look
and feel. This abstraction is further manifested in the following ways:
• The actual drawing to the MID’s display is performed by the implementation.

Applications do not define the visual appearance (e.g., shape, color, font, etc.) of the
components.

• Navigation, scrolling, and other primitive interaction is encapsulated by the
implementation, and the application is not aware of these interactions.

• Applications cannot access concrete input devices like specific individual keys.

In other words, when using the high-level API, it is assumed that the underlying
implementation will do the necessary adaptation to the device’s hardware and native UI
style.

The low-level API, on the other hand, provides very little abstraction. This API is designed
for applications that need precise placement and control of graphic elements, as well as
access to low-level input events. Some applications also need to access special, device-
specific features. A typical example of such an application would be a game.

Using the low-level API, an application can:

• Have full control of what is drawn on the display.
• Listen for primitive events like key presses and releases.
• Access concrete keys and other input devices.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 51

Applications that program to the low-level API are not guaranteed to be portable, since the
low-level API provides the means to access details that are specific to a particular device. If
the application does not use these features, the applications will be portable, and it is
recommended that the applications stick to the platform-independent part of the low-level
API whenever possible. This means that the applications should not directly assume any
other keys than defined in class Canvas, and should not depend on any specific screen size.
Rather, the application game-event mechanism should be used instead of referring to
concrete keys, and the application should inquire on the size of the display and adjust
accordingly.

9.2.1 Class Hierarchy
The central abstraction of the MIDP’s UI is a screen. A screen is an object that encapsulates
device-specific graphics rendering user input. Only one screen may be visible at a time, and
the user can only traverse through the items on that screen. The screen takes care of all
events that occur as the user navigates in the screen, with only higher-level events being
passed on to the application.

The rationale behind the screen-based design is based on the different display and keypad
solutions found in MIDP devices. These differences imply that the component layout,
scrolling, and focus traversal will be implemented differently on various devices. If an
application had to be aware of these issues, portability would be compromised. Simple
screens also organize the user interface into manageable pieces, resulting in user interfaces
that are easy to use and learn.

There are three categories of screens:

• Screens that encapsulate a complex user interface component (e.g., classes List or
TextBox). The structure of these screens is predefined, and the application cannot add
other components to these screens.

• Generic screens (i.e., class Form) that the application can populate with text, images, and
simple sets of related UI components.

• Screens that are used in context of the low-level API (i.e., subclasses of class Canvas).

Each screen, except the low-level Canvas, can attach a Ticker.

The class Display acts as the display manager that is instantiated for each active MIDlet and
provides methods to retrieve information about the device’s display capabilities. A Screen is
made visible by calling the setCurrent() method of Display.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

52 Mobile Information Device Profile (JSR-37) December 15, 2000

9.2.2 Class Overview
It is anticipated that most applications will utilize screens with predefined structures like
List, TextBox, and Alert. These classes are used in the following ways:
• List is used when the user should select from a predefined set of choices.
• TextBox is used when asking textual input.
• Alert is used to display temporary messages containing text and images.

A special class Form is defined for cases where screens with a predefined structure are not
sufficient. For example, an application may have two TextFields, or a TextField and a
simple ChoiceGroup. Although this class (Form) allows creation of arbitrary combinations
of components, developers should keep the limited display size in mind and create only
simple Forms.

Form is designed to contain a small number of closely related UI elements. These elements
are the subclasses of Item: ImageItem, StringItem, TextField, ChoiceGroup, and
Gauge. The classes ImageItem and StringItem are convenience classes that make certain
operations with Form and Alert easier. If the components do not all fit on the screen, the
implementation may either make the form scrollable or implement some components so that
they can either popup in a new screen or expand when the user edits the element.

9.2.3 Interplay with Application Manager
The user interface, like any other resource in the API, is to be controlled according to the
principle of MIDP application management. The UI expects the following conditions from
the application management software:
• getDisplay() is callable from startApp() until destroyApp() is returned.
• The Display object is the same until destroyApp() is called.
• The Displayable object set by setCurrent() is not changed by the application manager.

The application manager assumes that the application behaves as follows with respect to the
MIDlet events:
• startApp - The application may call setCurrent() for the first screen. The

application manager makes Displayable really visible when startApp() returns. Note
that startApp() can be called several times if pauseApp() is called in between. This
means that initialization should not take place, and the application should not accidentally
switch to another screen with setCurrent().

• pauseApp - The application may pause its threads. Also, if starting with another screen
when the application is re-activated, the new screen should be set with setCurrent().

• destroyApp - The application may delete created objects.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 53

9.3 Event Handling
User interaction causes events, and the implementation notifies the application of the events
by making corresponding callbacks. There are four kinds of UI callbacks:
• Abstract commands that are part of the high-level API
• Low-level events that represent single key presses and releases (and pointer events, if a

pointer is available)
• Calls to the paint() method of a Canvas class
• Calls to a Runnable object’s run() method requested by a call to callSerially() of

class Display

All UI callbacks are serialized, so they will never occur in parallel. (Timer events are not
considered UI events, and so timer callbacks may run concurrently with UI event callbacks.
However, timer callbacks on the same TimerTask object are serialized with each other.)
Otherwise, the UI callbacks are called as soon as possible after the previous UI callback
returns. The implementation also guarantees that the call to run() requested by a call to
callSerially() is made after any pending repaint requests have been satisfied.

9.3.1 Abstract Commands
Since MIDP UI is highly abstract, it does not dictate any concrete user interaction technique
like soft buttons or menus. Also, low-level user interactions such as traversal or scrolling are
not visible to the application. MIDP applications define Commands, and the implementation
may manifest these via either abstract buttons, menus, or whatever mechanisms are
appropriate for that device.

Commands are installed to a Displayable (Canvas or Screen) with a method addCommand
of class Displayable.

The native style of the device may assume that certain types of commands are placed on
standard places. For example, the “go-back” operation may always be mapped to the right
soft button. The Command class allows the application to communicate such a semantic
meaning to the implementation so that these standard mappings can be effected.

The Command objects have three constructor parameters:
• Label: Shown to the user as a hint.

• CommandType: The meaning of the command. One often used hint would be BACK,
which causes the application to go back to a previous state. Most phone designs have a
standard policy on which button is used for this operation. The commandType hint allows
the implementation to take advantage of that policy.

• Priority: Provided to the implementation for better mapping to device capabilities.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

54 Mobile Information Device Profile (JSR-37) December 15, 2000

There is also a select operation that could be, for example, implemented with GO/Select or a
similar button. This button does not need to have a label, and its meaning should always be
obvious to the user. For example, if the user is presented with a set of mutually exclusive
options, the select operation will obviously select one of those options.

While pressing the select button does not usually cause command notification to the
application, List of type IMPLICIT is an exception. Then notification with an implicit
command, SELECT_COMMAND, is notified.

9.3.2 High-Level API for Events
The handling of events in the high-level API is based on a listener model. Screens and
Canvases may have listeners for commands (see “Abstract Commands” on page 53). An
object willing to be a listener should implement an interface CommandListener that has one
method:

The application gets these events if the Screen or Canvas has attached Commands and if
there is a registered listener. A unicast-version of the listener model is adopted, so the
Screen or Canvas can have one listener at a time.

There is also a listener interface for state changes of the Items in a Form. The method

defined in interface ItemStateListener is called when the value of an interactive Gauge,
ChoiceGroup, or TextField changes. It is not expected that the listener will be called after
every change. However, if the value of an Item has been changed, the listener will be called
for the change sometime before it is called for another item or before a command is delivered
to the Form's CommandListener. It is suggested that the change listener is called at least after
focus (or equivalent) is lost from field. The listener should only be called if the field’s value
has actually changed.

void commandAction(Command c, Displayable d);

void itemStateChanged(Item item);

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 55

9.3.3 Low-Level API for Events
Low-level graphics and events have the following methods to handle low-level key events:

The last call, keyRepeated, is not necessarily available in all devices. The applications can
check the availability of repeat actions by calling the following method of the Canvas:

The API requires that there be standard key codes for the ITU-T keypad (0–9, *, #), but no
keypad layout is required by the API. Although an implementation may provide additional
keys, applications relying on these keys are not portable.

In addition, the class Canvas has methods for handling abstract game events. An
implementation maps all these key events to suitable keys on the device. For example, a
device with four-way navigation and a select key in the middle could use those keys, but a
simpler device may use certain keys on the numeric keypad (e.g., 2, 4, 5, 6, 8). These game
events allow development of portable applications that use the low-level events. The API
defines a set of abstract key-events: UP, DOWN, LEFT, RIGHT, FIRE, GAME_A,
GAME_B, GAME_C, and GAME_D.

An application can get the mapping of the key events to abstract key events by calling:

If the logic of the application is based on the values returned by this method, the application
is portable and run regardless of the keypad design.

It is also possible to map abstract event to keys with:

where gameAction is logical UP, DOWN, LEFT, RIGHT, FIRE, etc.

public void keyPressed(int keyCode);
public void keyReleased(int keyCode);
public void keyRepeated(int keyCode);

public static boolean hasRepeatEvents();

public static int getGameAction(int keyCode);

public static int getKeyCode(int gameAction);

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

56 Mobile Information Device Profile (JSR-37) December 15, 2000

It is assumed that the mapping between keys and abstract events does not change during the
execution of the game.

The following is an example of an application that retrieves and stores concrete key
identifiers during its initialization phase. The application then uses these stored values during
execution.

Another possibility would be to interpret the keys at runtime:

The low-level API also has support for pointer events, but since the following input
mechanisms may not be present in all devices, the following callback methods may never be
called in some devices:

class TetrisCanvas extends Canvas {
int leftKey, rightKey, downKey, rotateKey;

void init () {
leftKey = getKeyCode(LEFT);
rightKey = getKeyCode(RIGHT);
downKey = getKeyCode(DOWN);
rotateKey = getKeyCode(FIRE);

}

public void keyPressed(int keyCode) {
if (keyCode == leftKey) {

moveBlockLeft();
} else if (keyCode = rightKey) {

...
}

}
}

public void keyPressed(int keyCode) {
int action = getGameAction(keyCode);
if (action == LEFT) {

moveBlockLeft();
} else if (action == RIGHT) {

...
}

}

public void pointerPressed(int x, int y);
public void pointerReleased(int x, int y);
public void pointerDragged(int x, int y)

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 57

The application may check whether the pointer is available by calling the following methods
of class Canvas:

9.3.4 Interplay of High-Level Commands and the Low-Level
API
The class Canvas, which is used for low-level events and drawing, is a subclass of
Displayable, and applications can attach Commands to it. This is useful for jumping to an
options setup Screen in the middle of a game. Another example could be a map-based
navigation application where keys are used for moving in the map but commands are used
for higher-level actions.

Some devices may not have the means to interact with command when Canvas and the low-
level event mechanism are in use. In that case, the implementation may provide a means to
switch to a command mode and back with some hot key. In this case, the running Canvas
will receive messages showNotify() and hideNotify().

9.4 Graphics and Text in Low-Level API

9.4.1 The Redrawing Scheme
Repainting is done automatically for all Screens, but not for Canvas; therefore, developers
utilizing the low-level API must understand its repainting scheme.

In the low-level API, repainting of Canvas is done asynchronously so that several repaint
requests may be implemented within a single call as an optimization. This means that the
application requests the repainting by calling the method repaint() of class Canvas. The
actual drawing is done in the method paint() — which is provided by the subclass Canvas
— and does not necessarily happen synchronously to repaint(). It may happen later, and
several repaint requests may cause one single call to paint(). The application can flush the
repaint requests by calling serviceRepaints().

public static boolean hasPointerEvents();
public static boolean hasPointerMotionEvents();

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

58 Mobile Information Device Profile (JSR-37) December 15, 2000

As an example, assume that an application moves a box of width wid and height ht from
coordinates (x1,y1) to coordinates (x2,y2), where x2>x1 and y2>y1:

The last call causes the repaint thread to be scheduled. The repaint thread finds the two
requests from the event queue and repaints the region that is a union of the repaint area:

In this imaginary part of an implementation, the call canvas.paint() causes the
application-defined paint() method to be called.

9.4.2 Drawing Model
The only drawing operation provided is pixel replacement. The destination pixel value is
replaced by the current pixel value specified in the graphics object being used for rendering.
No facility for combining pixel values, such as raster-ops or alpha blending, is provided.

A 24-bit color model is provided with 8 bits each for the red, green, and blue components of
a color. Not all devices support 24-bit color, so they will map colors requested by the
application into colors available on the device. Facilities are provided in the Display class
for obtaining device characteristics, such as whether color is available and how many distinct
gray levels are available. This enables applications to adapt their behavior to a device
without compromising device independence.

Graphics may be rendered either directly to the display or to an off-screen image buffer. The
destination of rendered graphics depends on the origin of the graphics object. A graphics
object for rendering to the display is passed to the Canvas object's paint() method. This is

// move coordinates of box
box.x = x2;
box.y = y2;

// ensure old region repainted (with background)
canvas.repaint(x1,y1, wid, ht);

// make new region repainted
canvas.repaint(x2,y2, wid, ht);

// make everything really repainted
canvas.serviceRepaints();

graphics.clipRect(x1,y1, (x2-x1+wid), (y2-y1+ht));
canvas.paint(graphics);

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 59

the only way to obtain a graphics object whose destination is the display. Furthermore,
applications may draw by using this graphics object only for the duration of the paint()
method.

A graphics object for rendering to an off-screen image buffer may be obtained by calling the
getGraphics() method on the desired image. These graphics objects may be held
indefinitely by the application, and requests may be issued on these graphics objects at any
time.

Note that class Graphics has only the method setColor() for setting the color instead of
separate setBackground and setForeground calls. This means that backgrounds of drawing
areas have to be drawn with explicit fillRect() calls.

9.4.3 Coordinate System
The origin (0,0) of the available drawing area and images is in the upper-left corner of the
display. The numeric values of the x-coordinates monotonically increase from left to right,
and the numeric values of the y-coordinates monotonically increase from top to bottom.
Applications may assume that horizontal and vertical distances in the coordinate system
represent equal distances on the actual device display. If the shape of the pixels of the device
is significantly different from square, the implementation of the UI will do the required
coordinate transformation. A facility is provided for translating the origin of the coordinate
system. All coordinates are specified as integers.

The coordinate system represents locations between pixels, not the pixels themselves.
Therefore, the first pixel in the upper left corner of the display lies in the square bounded by
coordinates (0,0), (1,0), (0,1), (1,1).

An application may inquire about the available drawing area by calling the following
methods of Canvas:

9.4.4 Font Support
An application may request one of the font attributes specified below. However, the
underlying implementation may use a subset of what is specified. So it is up to the
implementation to return a font that most closely resembles the requested font.

Each font in the system is implemented individually. A programmer will call the static
getFont() method instead of instantiating new Font objects. This paradigm eliminates the
garbage creation normally associated with the use of fonts.

public static final int getWidth();
public static final int getHeight();

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

60 Mobile Information Device Profile (JSR-37) December 15, 2000

The Font class provides calls that access font metrics. The following attributes may be used
to request a font (from the Font class):
• Size: SMALL, MEDIUM, LARGE.
• Face: PROPORTIONAL, MONOSPACE, SYSTEM.
• Style: PLAIN, BOLD, ITALIC, UNDERLINED.

9.4.5 Drawing Text and Images
By default, the drawing of text is based on anchor points instead of the standard notion of
baseline. Anchor points are used to minimize the amount of computation required when
placing text. For example, in order to center a piece of text, an application needs to call
stringWidth() or charWidth() to get the width and then perform a combination of
subtraction and division to compute the proper location.

The method to draw text is defined as follows:

This method draws text in current foreground and background colors, using the current font
with its anchor point at (x,y). The definition of the anchor point should be one of the
horizontal constants (LEFT, HCENTER, RIGHT), logically combined (OR-ed) with one of
the vertical constants (TOP, BOTTOM). Vertical centering of the text is not included in the
API since it is hard to specify, not considered useful, and burdensome to implement. The
default anchor point is 0, which signifies that the upper-left vertex of the text’s bounding box
is used.

public void drawString(String text, int x, int y, int anchor);

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 61

The actual position of the bounding box of the text relative to the (x,y) location is
determined by the anchor point. These reference points occur at named locations along the
outer edge of the bounding box. Thus, the following calls have identical results:

For text drawing, character and line spacing are included as part of the values returned in the
Font.stringWidth() and Font.getHeight() calls. For example, given the following
code:

code fragments (1) and (2) should behave identically. This relies on Font.stringWidth()
to include the character spacing. Similarly, reasonable vertical spacing should be achieved
simply by adding the font height to the Y-position of subsequent lines. For example:

drawString(str, x, y, TOP|LEFT);
drawString(str, x + f.stringWidth(str)/2, y, TOP|HCENTER);
drawString(str, x + f.stringWidth(str), y, TOP|RIGHT);
drawString(str, x, y + f.getBaselinePosition(), BASELINE|LEFT);
drawString(str, x + f.stringWidth(str)/2,

y + f.getBaselinePosition(), BASELINE|HCENTER);

drawString(str, x + f.stringWidth(str),
y + f.getBaselinePosition(), BASELINE|RIGHT);

drawString(str, x, y + f.fontHeight(), BOTTOM|LEFT);
drawString(str, x + f.stringWidth(str)/2,

y + f.fontHeight(),BOTTOM|HCENTER);
drawString(str, x + f.stringWidth(str), y +

f.fontHeight(), BOTTOM|RIGHT);

// (1)
drawString(string1+string2, x, y, TOP|LEFT);

// (2)
drawString(string1, x, y, TOP|LEFT);
f.getFont();
drawString(string2, x + f.stringWidth(string1), y,

TOP|LEFT, string2);

drawString(string1 x, y, TOP|LEFT);
drawString(string2, x, y + getFont().fontHeight(),

TOP|LEFT);

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

62 Mobile Information Device Profile (JSR-37) December 15, 2000

should draw string1 and string2 on separate lines with line spacing embedded in the font
design. The font is assumed to include reasonable line spacing.

The stringWidth() of the string and the fontHeight() of the font in which it is drawn
define the size of the bounding box of a piece of text. As described above, this box includes
line and character spacing. The implementation is required to put this space below and to the
right of the pixels actually belonging to the characters drawn. Applications that position
graphics closely with respect to text (for example, to paint a rectangle around a string of text)
may assume that there is space below and to the right of a string and that there is no space
above and to the left of the string.

9.5 A Note on Concurrency
The UI API has been designed to be thread-safe. The methods may be called from callbacks,
TimerTasks, or threads created by the application. Also, the implementation generally does
not hold any locks on objects visible to the application. This means that the application
synchronizes its own behavior by locking any object. There is one exception to the rule:
serviceRepaints() of class Canvas. This method immediately calls the method paint(),
but possibly in the context of different threads. If paint() tries to synchronize on any object
that was locked by the application when serviceRepaints() was called, the application
will deadlock. The application programmer should not hold any locks when
serviceRepaints() is called. Also, locking an object used by paint() to synchronize is
always an error.

The UI API includes also a mechanism similar to other UI toolkits for synchronization with
events. With the method callSerially() of class Display, the application can execute an
operation serially with events. CallSerially() can be used for the same effect as
serviceRepaints(). The following code illustrates this implementation:

class MyCanvas extends Canvas {
void doStuff() {

//<code fragment 1>
serviceRepaints();

//<code fragment 2>
}

}

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 63

The following code is an alternative way of implementing the same functionality:

9.6 Implementation Notes
The implementation of a List or ChoiceGroup may include keyboard shortcuts for focusing
and selecting the choice elements, but the use of these shortcuts is not visible to the
application program.

In some implementations the UI components — Screens and Items — will be based on native
components. It is up to the implementation to free the used resources when the Java objects
are not needed anymore. One possible implementation scenario is a hook in the garbage
collector of KVM.

class MyClass extends Canvas implements Runnable {
void doStuff() {

//<code fragment 1>
callSerially(this);

}

public void run() {
// called only after all pending repaints served
//<<code fragment 2>;

}
}

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

64 Mobile Information Device Profile (JSR-37) December 15, 2000

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

65

APPENDIX A

Implementation Notes

A.1 Overview
This chapter addresses some possible implementation issues of the MIDP.

A.2 Implementation
This section discusses concepts that are not technically part of the MIDP specification but
are fundamental issues for implementers of the MIDP.

A.2.1 Application Management
Throughout this document, frequent reference is made to an abstract entity called the
application management software. In the context of this document, this term describes the
software that controls how MIDlets are installed, upgraded, and de-installed from the MID.
A more appropriate name for this entity might be MIDlet management software. This section
describes some of the functionality of the MIDlet management software.

Note – The intent of this section is to show an example of possible functionality, not to
mandate or specify this functionality.

To describe the functionality of the MIDlet management software, the different classes of
MIDlets must be defined.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

66 Mobile Information Device Profile (JSR-37) December 15, 2000

A.2.1.1 Classes of MIDlets
Broadly speaking, there are at least two possible classes of MIDlets. These classes are
differentiated by how the MIDlet is retrieved and installed. These classes, along with some of
their associated characteristics, are shown in Table A-1.

The first class of MIDlets is the permanent class. One use case for this MIDlet class would
be the user of a MID browsing a selection of available MIDlets (e.g., games, etc.). After
selecting a MIDlet, the MIDlet management software retrieves and permanently “installs” the
MIDlet (i.e., writes it to persistent storage). The user may run this MIDlet repeatedly without
retrieving the MIDlet again.

The other class of MIDlets is the system class, which is a special case of the permanent class.
A system-class MIDlet is created by the manufacturer of the MID and performs device-
specific functionality. System-class MIDlets may have access to non-public functionality of
the device. So, in a sense, system-class MIDlets operate in a more privileged mode than
other MIDlet classes. System-class MIDlets may have special constraints placed on their
retrieval and installation.

MIDs may or may not support all of the classes of MIDlets described in this section. Other
than recognizing the limitations of the target device (in terms of memory, etc.), a developer
targeting the MIDP need not be aware of MIDlet-class distinctions.

TABLE A-1 Possible Classes of MIDlets

MIDlet Class Characteristics

Permanent Resides, at least in part, in non-volatile memory.
Performs many functions.
May be run repeatedly without downloading again.

System Resides, at least in part, in non-volatile memory.
May be small or large.
Performs device-specific functionality.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 67

For any of the MIDlet classes discussed in Section A.2.1.1, “Classes of MIDlets,” there is an
implied set of operations that the MIDlet management software must be able to perform.
These operations are listed in Table A-2.1

Before a MIDlet can be launched, it must be retrieved from some source, called the MIDlet-
source. A MID may have multiple mediums from which to retrieve MIDlets. For example, a
MID may support retrieval via a serial cable, an IRDA port, or a wireless network. In this
case, the MIDlet management software must support a medium-identification step in which
the retrieval medium can be selected. After selecting the retrieval medium, the MIDlet
management software can initiate the negotiation step. In this step, the MID and the MIDlet-
source exchange information about the MIDlet and the MID. This information can include
the MID’s capability (e.g., available volatile memory), the size of the MIDlet,2 cost, etc.
Once the MID and the MIDlet-source have agreed that the MIDlet should be installed on the
device, the retrieval step begins. In this step, the MID reads the MIDlet “into” the device.

Once the MIDlet has been retrieved, the installation process may begin. An implementation
of the MIDP may need to verify that the retrieved MIDlet does not violate the MID’s security
policies. For example, a MID might enforce some sort of “code signing” mechanism to
validate that the retrieved MIDlet is from a trusted source. The next step in installation is the
transformation from the public representation of the MIDlet into some device-specific,
internal representation.3 This transformation may be as simple as writing the public
representation to persistent storage, or it may actually entail preparing the MIDlet to execute
directly from non-volatile memory.

TABLE A-2 Typical MIDlet Management Software Operations

Operation Description

Retrieval Retrieves the MIDlet from some source. Possible steps include
medium-identification, negotiation, and retrieval.

Installation Installs the MIDlet on the MID. Possible steps include verification
and transformation.

Launching Invokes the MIDlet. Possible steps include inspection and
invocation.

Version Management Allows installed MIDlets to be upgraded to newer versions. Possible
steps include inspection and version management.

Removal Removes a previously installed MIDlet. Possible steps include
inspection and deletion.

1. While this chapter refers to operations on MIDlets, these operations are, in fact, operations on JAR files as described in
Chapter 8, “Applications.”

2. See description of the MIDlet-descriptor in Chapter 8, “Applications.”

3. See the Connected, Limited Device Configuration (JSR-30), Sun Microsystems, Inc., for a definition of public
representation.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

68 Mobile Information Device Profile (JSR-37) December 15, 2000

After installation, the MIDlet can now be launched. Launching a MIDlet means that the user
is presented with a selection of installed MIDlets that are gathered by the MID performing
the inspection step. The user may then select one of the MIDlets for the MID to run (or
invoke). Invocation is the point at which the MIDlet enters the KVM. From this point, the
APIs described in Chapter 8, “Applications,” are used to control the MIDlet.

At some point after installation, a new version of a MIDlet may become available. To
upgrade to this new version, the MIDlet management software must keep track of what
MIDlets have been installed (identification) and their “version number” (version
management). Using this information, the older version of the MIDlet can be upgraded to the
newer version.

A related concept is MIDlet removal. This differs only slightly from the previous step in that
after performing inspection, the MIDlet management software deletes the installed “image”
of the MIDlet, and possibly its related resources. This may include records it has written to
persistent storage via the APIs defined in Chapter 7, “Persistent Storage.”

A.2.1.2 Installation, Upgrade, and Removal
The application management software handles the device-specific functions for installing,
removing, and running MIDlets. The application management software is responsible for the
integrity and security of MIDlets on the device. It also presents the application model for the
device to the user and handles errors that occur during the life cycle of a MIDlet.

The application management software installs or upgrades a MIDlet by examining the
application descriptor and the corresponding JAR file.

When the user requests the installation of an MIDlet suite via its application descriptor or by
presenting the JAR file, the application management software checks if it is one of the
currently installed MIDlets. JAR files are uniquely identified by the MIDlet-name and
MIDlet-vendor attributes from the manifest. If these values match, then the MIDlet suite is
the same as one of the installed MIDlet suites. If so, and the MIDlet-Version of the requested
version is newer than the installed version, the application management software may
confirm with the user for approval before downloading and installing the newer version of
the MIDlet suite.

The application management software should ensure that if the MIDlet suite update fails for
any reason, the older version is left intact on the MIDP device. When the update is
successful, the older version of the MIDlet suite should be removed. As part of the updating
process, the persistent storage of the MIDlet suite should be preserved for use by the updated
application.

When a MIDlet suite is removed, all components, persistent storage, and resources consumed
by the MIDlet suite SHOULD be removed from the device.

The MIDP implementation will not be responsible for upgrading the format of the data in the
RMS permanent storage. If an updated MIDlet uses a different data format than the version
it is replacing, it will be the responsibility of the MIDlet to upgrade the data.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 69

Note – There is no secure unique identifier for a MIDlet suite that is fully reliable and
cannot be altered. The device’s application management software may take additional actions
to confirm the integrity of MIDlet suite to be installed.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

70 Mobile Information Device Profile (JSR-37) December 15, 2000

December 15, 2000 Mobile Information Device Profile (JSR-37) 71

Package
java.lang
Description
MID Profile Language Classes included from Java 2 Standard Edition. In addition to the java.lang classes
specified in the Connected Limited Device Configuration the Mobile Information Device Profile includes the
following class from Java 2 Standard Edition.

• java.lang.IllegalStateException.java

IllegalStateExceptions are thrown when illegal transitions are requested, such as scheduling a Tim-
erTask or in the containment of user interface components.

Class Summary

Classes
IllegalStateException Signals that a method has been invoked at an illegal or inappropriate time.

java.lang

72 Mobile Information Device Profile (JSR-37) December 15, 2000

December 15, 2000 Mobile Information Device Profile (JSR-37) 73

java.lang
IllegalStateException
Syntax
public class IllegalStateException extends java.lang.RuntimeException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--java.lang.IllegalStateException

Description
Signals that a method has been invoked at an illegal or inappropriate time. In other words, the Java environment
or Java application is not in an appropriate state for the requested operation.

Since: JDK1.1

Constructors

IllegalStateException()
public IllegalStateException ()

Constructs an IllegalStateException with no detail message. A detail message is a String that describes this
particular exception.

Member Summary
Constructors

public IllegalStateException ()

public IllegalStateException (String s)

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), printStackTrace(), toString()

Methods inherited from class Object
equals(Object), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(long),
wait(long, int)

IllegalStateException java.lang
IllegalStateException(String)

74 Mobile Information Device Profile (JSR-37) December 15, 2000

IllegalStateException(String)
public IllegalStateException (String s)

Constructs an IllegalStateException with the specified detail message. A detail message is a String that
describes this particular exception.

Parameters:
s - the String that contains a detailed message

December 15, 2000 Mobile Information Device Profile (JSR-37) 75

Package
java.util
Description
MID Profile Utility Classes included from Java 2 Standard Edition. In addition to the java.util classes
specified in the Connected Limited Device Configuration the Mobile Information Device Profile includes the
following classes from Java 2 Standard Edition.

• java.util.Timer
• java.util.TimerTask

Timers provide facility for an application to schedule task for future execution in a background thread. Timer-
Tasks may be scheduled using Timers for one-time execution, or for repeated execution at regular intervals.

Class Summary

Classes
Timer A facility for threads to schedule tasks for future execution in a background thread.
TimerTask A task that can be scheduled for one-time or repeated execution by a Timer.

java.util

76 Mobile Information Device Profile (JSR-37) December 15, 2000

December 15, 2000 Mobile Information Device Profile (JSR-37) 77

java.util
Timer
Syntax
public class Timer

java.lang.Object
|
+--java.util.Timer

Description
A facility for threads to schedule tasks for future execution in a background thread. Tasks may be scheduled for
one-time execution, or for repeated execution at regular intervals.

Corresponding to each Timer object is a single background thread that is used to execute all of the timer's
tasks, sequentially. Timer tasks should complete quickly. If a timer task takes excessive time to complete, it
"hogs" the timer's task execution thread. This can, in turn, delay the execution of subsequent tasks, which may
"bunch up" and execute in rapid succession when (and if) the offending task finally completes.

After the last live reference to a Timer object goes away and all outstanding tasks have completed execution,
the timer's task execution thread terminates gracefully (and becomes subject to garbage collection). However,
this can take arbitrarily long to occur. By default, the task execution thread does not run as a daemon thread, so
it is capable of keeping an application from terminating. If a caller wants to terminate a timer's task execution
thread rapidly, the caller should invoke the timer's cancel method.

If the timer's task execution thread terminates unexpectedly, for example, because its stop method is invoked,
any further attempt to schedule a task on the timer will result in an IllegalStateException, as if the
timer's cancel method had been invoked.

This class is thread-safe: multiple threads can share a single Timer object without the need for external syn-
chronization.

This class does not offer real-time guarantees: it schedules tasks using the Object.wait(long) method.

Timers function only within a single VM and are cancelled when the VM exits. When the VM is started no tim-
ers exist, they are created only by application request.

Since: 1.3

See Also: TimerTask, Object.wait(long)

Member Summary
Constructors

public Timer ()

Methods
void public void cancel ()

void public void schedule (TimerTask task, Date time)

void public void schedule (TimerTask task, Date firstTime,
long period)

void public void schedule (TimerTask task, long delay)

void public void schedule (TimerTask task, long delay,
long period)

Timer java.util
Timer()

78 Mobile Information Device Profile (JSR-37) December 15, 2000

Constructors

Timer()
public Timer ()

Creates a new timer. The associated thread does not run as a daemon thread, which may prevent an applica-
tion from terminating.

See Also: Thread, public void cancel ()

Methods

cancel()
public void cancel ()

Terminates this timer, discarding any currently scheduled tasks. Does not interfere with a currently execut-
ing task (if it exists). Once a timer has been terminated, its execution thread terminates gracefully, and no
more tasks may be scheduled on it.

Note that calling this method from within the run method of a timer task that was invoked by this timer
absolutely guarantees that the ongoing task execution is the last task execution that will ever be performed
by this timer.

This method may be called repeatedly; the second and subsequent calls have no effect.

schedule(TimerTask, Date)
public void schedule (TimerTask task, Date time)

Schedules the specified task for execution at the specified time. If the time is in the past, the task is sched-
uled for immediate execution.

void public void scheduleAtFixedRate (TimerTask task,
Date firstTime, long period)

void public void scheduleAtFixedRate (TimerTask task, long delay,
long period)

Inherited Member Summary

Methods inherited from class Object
equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(long), wait(long, int)

Member Summary

 java.util Timer
schedule(TimerTask, Date, long)

December 15, 2000 Mobile Information Device Profile (JSR-37) 79

Parameters:
task - task to be scheduled.

time - time at which task is to be executed.

Throws: IllegalArgumentException - if time.getTime() is negative.

IllegalStateException - if task was already scheduled or cancelled, timer was cancelled, or
timer thread terminated.

schedule(TimerTask, Date, long)
public void schedule (TimerTask task, Date firstTime, long period)

Schedules the specified task for repeated fixed-delay execution, beginning at the specified time. Subsequent
executions take place at approximately regular intervals, separated by the specified period.

In fixed-delay execution, each execution is scheduled relative to the actual execution time of the previous
execution. If an execution is delayed for any reason (such as garbage collection or other background activ-
ity), subsequent executions will be delayed as well. In the long run, the frequency of execution will gener-
ally be slightly lower than the reciprocal of the specified period (assuming the system clock underlying
Object.wait(long) is accurate).

Fixed-delay execution is appropriate for recurring activities that require "smoothness." In other words, it is
appropriate for activities where it is more important to keep the frequency accurate in the short run than in
the long run. This includes most animation tasks, such as blinking a cursor at regular intervals. It also
includes tasks wherein regular activity is performed in response to human input, such as automatically
repeating a character as long as a key is held down.

Parameters:
task - task to be scheduled.

firstTime - First time at which task is to be executed.

period - time in milliseconds between successive task executions.

Throws: IllegalArgumentException - if time.getTime() is negative.

IllegalStateException - if task was already scheduled or cancelled, timer was cancelled, or
timer thread terminated.

schedule(TimerTask, long)
public void schedule (TimerTask task, long delay)

Schedules the specified task for execution after the specified delay.

Parameters:
task - task to be scheduled.

delay - delay in milliseconds before task is to be executed.

Throws: IllegalArgumentException - if delay is negative, or delay +
System.currentTimeMillis() is negative.

IllegalStateException - if task was already scheduled or cancelled, or timer was cancelled.

Timer java.util
schedule(TimerTask, long, long)

80 Mobile Information Device Profile (JSR-37) December 15, 2000

schedule(TimerTask, long, long)
public void schedule (TimerTask task, long delay, long period)

Schedules the specified task for repeated fixed-delay execution, beginning after the specified delay. Subse-
quent executions take place at approximately regular intervals separated by the specified period.

In fixed-delay execution, each execution is scheduled relative to the actual execution time of the previous
execution. If an execution is delayed for any reason (such as garbage collection or other background activ-
ity), subsequent executions will be delayed as well. In the long run, the frequency of execution will gener-
ally be slightly lower than the reciprocal of the specified period (assuming the system clock underlying
Object.wait(long) is accurate).

Fixed-delay execution is appropriate for recurring activities that require "smoothness." In other words, it is
appropriate for activities where it is more important to keep the frequency accurate in the short run than in
the long run. This includes most animation tasks, such as blinking a cursor at regular intervals. It also
includes tasks wherein regular activity is performed in response to human input, such as automatically
repeating a character as long as a key is held down.

Parameters:
task - task to be scheduled.

delay - delay in milliseconds before task is to be executed.

period - time in milliseconds between successive task executions.

Throws: IllegalArgumentException - if delay is negative, or delay +
System.currentTimeMillis() is negative.

IllegalStateException - if task was already scheduled or cancelled, timer was cancelled, or
timer thread terminated.

scheduleAtFixedRate(TimerTask, Date, long)
public void scheduleAtFixedRate (TimerTask task, Date firstTime, long period)

Schedules the specified task for repeated fixed-rate execution, beginning at the specified time. Subsequent
executions take place at approximately regular intervals, separated by the specified period.

In fixed-rate execution, each execution is scheduled relative to the scheduled execution time of the initial
execution. If an execution is delayed for any reason (such as garbage collection or other background activ-
ity), two or more executions will occur in rapid succession to "catch up." In the long run, the frequency of
execution will be exactly the reciprocal of the specified period (assuming the system clock underlying
Object.wait(long) is accurate).

Fixed-rate execution is appropriate for recurring activities that are sensitive to absolute time, such as ring-
ing a chime every hour on the hour, or running scheduled maintenance every day at a particular time. It is
also appropriate for for recurring activities where the total time to perform a fixed number of executions is
important, such as a countdown timer that ticks once every second for ten seconds. Finally, fixed-rate exe-
cution is appropriate for scheduling multiple repeating timer tasks that must remain synchronized with
respect to one another.

Parameters:
task - task to be scheduled.

firstTime - First time at which task is to be executed.

 java.util Timer
scheduleAtFixedRate(TimerTask, long, long)

December 15, 2000 Mobile Information Device Profile (JSR-37) 81

period - time in milliseconds between successive task executions.

Throws: IllegalArgumentException - if time.getTime() is negative.

IllegalStateException - if task was already scheduled or cancelled, timer was cancelled, or
timer thread terminated.

scheduleAtFixedRate(TimerTask, long, long)
public void scheduleAtFixedRate (TimerTask task, long delay, long period)

Schedules the specified task for repeated fixed-rate execution, beginning after the specified delay. Subse-
quent executions take place at approximately regular intervals, separated by the specified period.

In fixed-rate execution, each execution is scheduled relative to the scheduled execution time of the initial
execution. If an execution is delayed for any reason (such as garbage collection or other background activ-
ity), two or more executions will occur in rapid succession to "catch up." In the long run, the frequency of
execution will be exactly the reciprocal of the specified period (assuming the system clock underlying
Object.wait(long) is accurate).

Fixed-rate execution is appropriate for recurring activities that are sensitive to absolute time, such as ring-
ing a chime every hour on the hour, or running scheduled maintenance every day at a particular time. It is
also appropriate for for recurring activities where the total time to perform a fixed number of executions is
important, such as a countdown timer that ticks once every second for ten seconds. Finally, fixed-rate exe-
cution is appropriate for scheduling multiple repeating timer tasks that must remain synchronized with
respect to one another.

Parameters:
task - task to be scheduled.

delay - delay in milliseconds before task is to be executed.

period - time in milliseconds between successive task executions.

Throws: IllegalArgumentException - if delay is negative, or delay +
System.currentTimeMillis() is negative.

IllegalStateException - if task was already scheduled or cancelled, timer was cancelled, or
timer thread terminated.

Timer java.util
scheduleAtFixedRate(TimerTask, long, long)

82 Mobile Information Device Profile (JSR-37) December 15, 2000

December 15, 2000 Mobile Information Device Profile (JSR-37) 83

java.util
TimerTask
Syntax
public abstract class TimerTask implements java.lang.Runnablet

java.lang.Object
|
+--java.util.TimerTask

All Implemented Interfaces: Runnable

Description
A task that can be scheduled for one-time or repeated execution by a Timer.

Since: 1.3

See Also: Timer

Constructors

TimerTask()
protected TimerTask ()

Creates a new timer task.

Member Summary
Constructors

protected TimerTask ()

Methods
boolean public boolean cancel ()

void public abstract void run ()

long public long scheduledExecutionTime ()

Inherited Member Summary

Methods inherited from class Object
equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(long), wait(long, int)

TimerTask java.util
cancel()

84 Mobile Information Device Profile (JSR-37) December 15, 2000

Methods

cancel()
public boolean cancel ()

Cancels this timer task. If the task has been scheduled for one-time execution and has not yet run, or has not
yet been scheduled, it will never run. If the task has been scheduled for repeated execution, it will never run
again. (If the task is running when this call occurs, the task will run to completion, but will never run again.)

Note that calling this method from within the run method of a repeating timer task absolutely guarantees
that the timer task will not run again.

This method may be called repeatedly; the second and subsequent calls have no effect.

Returns: true if this task is scheduled for one-time execution and has not yet run, or this task is scheduled
for repeated execution. Returns false if the task was scheduled for one-time execution and has already
run, or if the task was never scheduled, or if the task was already cancelled. (Loosely speaking, this
method returns true if it prevents one or more scheduled executions from taking place.)

run()
public abstract void run ()

The action to be performed by this timer task.

Specified By: Runnable.run() in interface Runnable

scheduledExecutionTime()
public long scheduledExecutionTime ()

Returns the scheduled execution time of the most recent actual execution of this task. (If this method is
invoked while task execution is in progress, the return value is the scheduled execution time of the ongoing
task execution.)

This method is typically invoked from within a task's run method, to determine whether the current execu-
tion of the task is sufficiently timely to warrant performing the scheduled activity:

public void run() {
if (System.currentTimeMillis() - scheduledExecutionTime() >=

MAX_TARDINESS)
return; // Too late; skip this execution.

// Perform the task
}

This method is typically not used in conjunction with fixed-delay execution repeating tasks, as their sched-
uled execution times are allowed to drift over time, and so are not terribly significant.

Returns: the time at which the most recent execution of this task was scheduled to occur, in the format
returned by Date.getTime(). The return value is undefined if the task has yet to commence its first
execution.

See Also: Date.getTime()

December 15, 2000 Mobile Information Device Profile (JSR-37) 85

Package
javax.microedition.rms
Description
The Mobile Information Device Profile provides a mechanism for MIDlets to persistently store data and later
retrieve it. This persistent storage mechanism is modeled after a simple record oriented database and is called
the Record Management System.

Example:

The example uses the Record Management System to store and retrieve high scores for a game. In the example,
high scores are stored in separate records, and sorted when necessary using a RecordEnumeration.

javax.microedition.rms

86 Mobile Information Device Profile (JSR-37) December 15, 2000

import javax.microedition.rms.*;
import java.io.DataOutputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.ByteArrayInputStream;
import java.io.DataInputStream;
import java.io.EOFException;
/**
* A class used for storing and showing game scores.
*/

public class RMSGameScores
implements RecordFilter, RecordComparator

{
/*
* The RecordStore used for storing the game scores.
*/

private RecordStore recordStore = null;
/*
* The player name to use when filtering.
*/

public static String playerNameFilter = null;
/*
* Part of the RecordFilter interface.
*/

public boolean matches(byte[] candidate)
throws IllegalArgumentException

{
// If no filter set, nothing can match it.
if (this.playerNameFilter == null) {

return false;
}
ByteArrayInputStream bais = new ByteArrayInputStream(candidate);
DataInputStream inputStream = new DataInputStream(bais);
String name = null;
try {

int score = inputStream.readInt();
name = inputStream.readUTF();

}
catch (EOFException eofe) {

System.out.println(eofe);
eofe.printStackTrace();

}
catch (IOException eofe) {

System.out.println(eofe);
eofe.printStackTrace();

}
return (this.playerNameFilter.equals(name));

}
/*
* Part of the RecordComparator interface.
*/

public int compare(byte[] rec1, byte[] rec2)
{

// Construct DataInputStreams for extracting the scores from
// the records.
ByteArrayInputStream bais1 = new ByteArrayInputStream(rec1);
DataInputStream inputStream1 = new DataInputStream(bais1);
ByteArrayInputStream bais2 = new ByteArrayInputStream(rec2);
DataInputStream inputStream2 = new DataInputStream(bais2);
int score1 = 0;
int score2 = 0;
try {

// Extract the scores.
score1 = inputStream1.readInt();
score2 = inputStream2.readInt();

}
catch (EOFException eofe) {

System.out.println(eofe);

 javax.microedition.rms

December 15, 2000 Mobile Information Device Profile (JSR-37) 87

eofe.printStackTrace();
}
catch (IOException eofe) {

System.out.println(eofe);
eofe.printStackTrace();

}
// Sort by score
if (score1 < score2) {

return RecordComparator.PRECEDES;
}
else if (score1 > score2) {

return RecordComparator.FOLLOWS;
}
else {

return RecordComparator.EQUIVALENT;
}

}
/**
* The constructor opens the underlying record store,
* creating it if necessary.
*/

public RMSGameScores()
{

//
// Create a new record store for this example
//
try {

recordStore = RecordStore.openRecordStore("scores", true);
}
catch (RecordStoreException rse) {

System.out.println(rse);
rse.printStackTrace();

}
}
/**
* Add a new score to the storage.
*
* @param score the score to store.
* @param playerName the name of the play achieving this score.
*/

public void addScore(int score, String playerName)
{

//
// Each score is stored in a separate record, formatted with
// the score, followed by the player name.
//
ByteArrayOutputStream baos = new ByteArrayOutputStream();
DataOutputStream outputStream = new DataOutputStream(baos);
try {

// Push the score into a byte array.
outputStream.writeInt(score);
// Then push the player name.
outputStream.writeUTF(playerName);

}
catch (IOException ioe) {

System.out.println(ioe);
ioe.printStackTrace();

}
// Extract the byte array
byte[] b = baos.toByteArray();
// Add it to the record store
try {

recordStore.addRecord(b, 0, b.length);
}
catch (RecordStoreException rse) {

System.out.println(rse);
rse.printStackTrace();

}

javax.microedition.rms

88 Mobile Information Device Profile (JSR-37) December 15, 2000

}
/**
* A helper method for the printScores methods.
*/

private void printScoresHelper(RecordEnumeration re)
{

try {
while(re.hasNextElement()) {

int id = re.nextRecordIndex();
ByteArrayInputStream bais = new ByteArrayInputStream(recordStore.getRecord(id));
DataInputStream inputStream = new DataInputStream(bais);
try {

int score = inputStream.readInt();
String playerName = inputStream.readUTF();
System.out.println(playerName + " = " + score);

}
catch (EOFException eofe) {

System.out.println(eofe);
eofe.printStackTrace();

}
}

}
catch (RecordStoreException rse) {

System.out.println(rse);
rse.printStackTrace();

}
catch (IOException ioe) {

System.out.println(ioe);
ioe.printStackTrace();

}
}
/**
* This method prints all of the scores sorted by game score.
*/

public void printScores()
{

try {
// Enumerate the records using the comparator implemented
// above to sort by game score.
RecordEnumeration re = recordStore.enumerateRecords(null, this,

true);
printScoresHelper(re);

}
catch (RecordStoreException rse) {

System.out.println(rse);
rse.printStackTrace();

}
}
/**
* This method prints all of the scores for a given player,
* sorted by game score.
*/

public void printScores(String playerName)
{

try {
// Enumerate the records using the comparator and filter
// implemented above to sort by game score.
RecordEnumeration re = recordStore.enumerateRecords(this, this,

true);
printScoresHelper(re);

}
catch (RecordStoreException rse) {

System.out.println(rse);
rse.printStackTrace();

}
}
public static void main(String[] args)
{

 javax.microedition.rms

December 15, 2000 Mobile Information Device Profile (JSR-37) 89

RMSGameScores rmsgs = new RMSGameScores();
rmsgs.addScore(100, "Alice");
rmsgs.addScore(120, "Bill");
rmsgs.addScore(80, "Candice");
rmsgs.addScore(40, "Dean");
rmsgs.addScore(200, "Ethel");
rmsgs.addScore(110, "Farnsworth");
rmsgs.addScore(220, "Farnsworth");
System.out.println("All scores");
rmsgs.printScores();
System.out.println("Farnsworth's scores");
RMSGameScores.playerNameFilter = "Farnsworth";
rmsgs.printScores("Farnsworth");

}
}

Class Summary

Interfaces
RecordComparator An interface defining a comparator which compares two records (in an implementa-

tion-defined manner) to see if they match or what their relative sort order is.
RecordEnumeration A class representing a bidirectional record store Record enumerator.
RecordFilter An interface defining a filter which examines a record to see if it matches (based on an

application-defined criteria).
RecordListener A listener interface for receiving Record Changed/Added/Deleted events from a

record store.

Classes
InvalidRecordIDExcep-
tion

Thrown to indicate an operation could not be completed because the record ID was
invalid.

RecordStore A class representing a record store.
RecordStoreException Thrown to indicate a general exception occurred in a record store operation.
RecordStoreFullExcep-
tion

Thrown to indicate an operation could not be completed because the record store sys-
tem storage is full.

RecordStoreNotFoun-
dException

Thrown to indicate an operation could not be completed because the record store could
not be found.

RecordStoreNotOpenEx-
ception

Thrown to indicate that an operation was attempted on a closed record store.

javax.microedition.rms

90 Mobile Information Device Profile (JSR-37) December 15, 2000

December 15, 2000 Mobile Information Device Profile (JSR-37) 91

javax.microedition.rms
InvalidRecordIDException
Syntax
public class InvalidRecordIDException extends RecordStoreException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--RecordStoreException

|
+--javax.microedition.rms.InvalidRecordIDException

Description
Thrown to indicate an operation could not be completed because the record ID was invalid.

Constructors

InvalidRecordIDException()
public InvalidRecordIDException ()

Constructs a new InvalidRecordIDException with no detail message.

Member Summary
Constructors

public InvalidRecordIDException ()

public InvalidRecordIDException (String message)

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), printStackTrace(), toString()

Methods inherited from class Object
equals(Object), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(long),
wait(long, int)

InvalidRecordIDException javax.microedition.rms
InvalidRecordIDException(String)

92 Mobile Information Device Profile (JSR-37) December 15, 2000

InvalidRecordIDException(String)
public InvalidRecordIDException (String message)

Constructs a new InvalidRecordIDException with the specified detail message.

Parameters:
message - the detail message.

December 15, 2000 Mobile Information Device Profile (JSR-37) 93

javax.microedition.rms
RecordComparator
Syntax
public interface RecordComparator

Description

An interface defining a comparator which compares two records (in an implementation-defined manner) to see
if they match or what their relative sort order is. The application implements this interface to compare two can-
didate records. The return value must indicate the ordering of the two records. The compare method is called by
RecordEnumeration to sort and return records in an application specified order. For example:

RecordComparator c = new AddressRecordComparator(); //
class implements RecordComparator

if (c.compare(recordStore.getRecord(rec1), recordStore.getRecord(rec2)) == RecordCompara
tor.PRECEDES)
return rec1;

Fields

EQUIVALENT
public static final int EQUIVALENT

EQUIVALENT means that in terms of search or sort order, the two records are the same. This does not nec-
essarily mean that the two records are identical.

The value of EQUIVALENT is 0.

FOLLOWS
public static final int FOLLOWS

FOLLOWS means that the left (first parameter) record follows the right (second parameter) record in terms
of search or sort order.

The value of FOLLOWS is 1.

Member Summary
Fields

int public static final int EQUIVALENT

int public static final int FOLLOWS

int public static final int PRECEDES

Methods
int public int compare (byte[] rec1, byte[] rec2)

RecordComparator javax.microedition.rms
PRECEDES

94 Mobile Information Device Profile (JSR-37) December 15, 2000

PRECEDES
public static final int PRECEDES

PRECEDES means that the left (first parameter) record precedes the right (second parameter) record in
terms of search or sort order.

The value of PRECEDES is -1.

Methods

compare(byte[], byte[])
public int compare (byte[] rec1, byte[] rec2)

Returns RecordComparator.PRECEDES if rec1 precedes rec2 in sort order, or RecordCompara-
tor.FOLLOWS if rec1 follows rec2 in sort order, or RecordComparator.EQUIVALENT if rec1 and
rec2 are equivalent in terms of sort order.

Parameters:
rec1 - The first record to use for comparison. Within this method, the application must treat this
parameter as read-only.

rec2 - The second record to use for comparison. Within this method, the application must treat this
parameter as read-only.

Returns: RecordComparator.PRECEDES if rec1 precedes rec2 in sort order, or
RecordComparator.FOLLOWS if rec1 follows rec2 in sort order, or
RecordComparator.EQUIVALENT if rec1 and rec2 are equivalent in terms of sort order.

December 15, 2000 Mobile Information Device Profile (JSR-37) 95

javax.microedition.rms
RecordEnumeration
Syntax
public interface RecordEnumeration

Description

A class representing a bidirectional record store Record enumerator. The RecordEnumeration logically main-
tains a sequence of the recordId's of the records in a record store. The enumerator will iterate over all (or a sub-
set, if an optional record filter has been supplied) of the records in an order determined by an optional record
comparator.

By using an optional RecordFilter, a subset of the records can be chosen that match the supplied filter.
This can be used for providing search capabilities.

By using an optional RecordComparator, the enumerator can index through the records in an order deter-
mined by the comparator. This can be used for providing sorting capabilities.

If, while indexing through the enumeration, some records are deleted from the record store, the recordId's
returned by the enumeration may no longer represent valid records. To avoid this problem, the RecordEnumer-
ation can optionally become a listener of the RecordStore and react to record additions and deletions by recreat-
ing its internal index. Use special care when using this option however, in that every record addition, change
and deletion will cause the index to be rebuilt, which may have serious performance impacts.

The first call to nextRecord() returns the record data from the first record in the sequence. Subsequent calls
to nextRecord() return the next consecutive record's data. To return the record data from the previous con-
secutive from any given point in the enumeration, call previousRecord(). On the other hand, if after cre-
ation, the first call is to previousRecord(), the record data of the last element of the enumeration will be
returned. Each subsequent call to previousRecord() will step backwards through the sequence.

Final note, to do record store searches, create a RecordEnumeration with no RecordComparator, and an appro-
priate RecordFilter with the desired search criterion.

Member Summary
Methods

void public void destroy ()

boolean public boolean hasNextElement ()

boolean public boolean hasPreviousElement ()

boolean public boolean isKeptUpdated ()

void public void keepUpdated (boolean keepUpdated)

byte[] public byte[] nextRecord ()

int public int nextRecordId ()

int public int numRecords ()

byte[] public byte[] previousRecord ()

int public int previousRecordId ()

void public void rebuild ()

void public void reset ()

RecordEnumeration javax.microedition.rms
destroy()

96 Mobile Information Device Profile (JSR-37) December 15, 2000

Methods

destroy()
public void destroy ()

Frees internal resources used by this RecordEnumeration. MIDlets should call this method when they are
done using a RecordEnumeration. If a MIDlet tries to use a RecordEnumeration after this method has been
called, it will throw a IllegalStateException.

hasNextElement()
public boolean hasNextElement ()

Returns true if more elements exist in the next direction.

Returns: true if more elements exist in the next direction.

hasPreviousElement()
public boolean hasPreviousElement ()

Returns true if more elements exist in the previous direction.

Returns: true if more elements exist in the previous direction.

isKeptUpdated()
public boolean isKeptUpdated ()

Returns true if the enumeration keeps its enumeration current with any changes in the records.

Returns: true if the enumeration keeps its enumeration current with any changes in the records.

keepUpdated(boolean)
public void keepUpdated (boolean keepUpdated)

Used to set whether the enumeration will be keep its internal index up to date with the record store record
additions/deletions/changes. Note that this should be used carefully due to the potential performance prob-
lems associated with maintaining the enumeration with every change.

Parameters:
keepUpdated - If true, the enumerator will keep its enumeration current with any changes in the
records of the record store. Use with caution as there are possible performance consequences. If false
the enumeration will not be kept current and may return recordIds for records that have been deleted or
miss records that are added later. It may also return records out of order that have been modified after
the enumeration was built. Note that any changes to records in the record store are accurately reflected
when the record is later retrieved, either directly or through the enumeration. The thing that is risked by
setting this parameter false is the filtering and sorting order of the enumeration when records are
modified, added, or deleted.

See Also: public void rebuild ()

 javax.microedition.rms RecordEnumeration
nextRecord()

December 15, 2000 Mobile Information Device Profile (JSR-37) 97

nextRecord()
public byte[] nextRecord ()

Returns a copy of the next record in this enumeration, where next is defined by the comparator and/or filter
supplied in the constructor of this enumerator. The byte array returned is a copy of the record. Any changes
made to this array will NOT be reflected in the record store. After calling this method, the enumeration is
advanced to the next available record.

Returns: the next record in this enumeration.

Throws: InvalidRecordIDException - when no more records are available. Subsequent calls to
this method will continue to throw this exception until reset() has been called to reset the
enumeration.

RecordStoreNotOpenException - if the record store is not open.

RecordStoreException - if a general record store exception occurs.

nextRecordId()
public int nextRecordId ()

Returns the recordId of the next record in this enumeration, where next is defined by the comparator and/or
filter supplied in the constructor of this enumerator. After calling this method, the enumeration is advanced
to the next available record.

Returns: the recordId of the next record in this enumeration.

Throws: InvalidRecordIDException - when no more records are available. Subsequent calls to
this method will continue to throw this exception until reset() has been called to reset the
enumeration.

numRecords()
public int numRecords ()

Returns the number of records available in this enumeration's set. That is, the number of records that have
matched the filter criterion. Note that this forces the RecordEnumeration to fully build the enumeration by
applying the filter to all records, which may take a non-trivial amount of time if there are a lot of records in
the record store.

Returns: the number of records available in this enumeration's set. That is, the number of records that
have matched the filter criterion.

RecordEnumeration javax.microedition.rms
previousRecord()

98 Mobile Information Device Profile (JSR-37) December 15, 2000

previousRecord()
public byte[] previousRecord ()

Returns a copy of the previous record in this enumeration, where previous is defined by the comparator
and/or filter supplied in the constructor of this enumerator. The byte array returned is a copy of the record.
Any changes made to this array will NOT be reflected in the record store. After calling this method, the
enumeration is advanced to the next (previous) available record.

Returns: the previous record in this enumeration.

Throws: InvalidRecordIDException - when no more records are available. Subsequent calls to
this method will continue to throw this exception until reset() has been called to reset the
enumeration.

RecordStoreNotOpenException - if the record store is not open.

RecordStoreException - if a general record store exception occurs.

previousRecordId()
public int previousRecordId ()

Returns the recordId of the previous record in this enumeration, where previous is defined by the compara-
tor and/or filter supplied in the constructor of this enumerator. After calling this method, the enumeration is
advanced to the next (previous) available record.

Returns: the recordId of the previous record in this enumeration.

Throws: InvalidRecordIDException - when no more records are available. Subsequent calls to
this method will continue to throw this exception until reset() has been called to reset the
enumeration.

rebuild()
public void rebuild ()

Request that the enumeration be updated to reflect the current record set. Useful for when a MIDlet makes
a number of changes to the record store, and then wants an existing RecordEnumeration to enumerate the
new changes.

See Also: public void keepUpdated (boolean keepUpdated)

reset()
public void reset ()

Returns the enumeration index to the same state as right after the enumeration was created.

December 15, 2000 Mobile Information Device Profile (JSR-37) 99

javax.microedition.rms
RecordFilter
Syntax
public interface RecordFilter

Description

An interface defining a filter which examines a record to see if it matches (based on an application-defined cri-
teria). The application implements the match() method to select records to be returned by the RecordEnumera-
tion. Returns true if the candidate record is selected by the RecordFilter. This interface is used in the record
store for searching or subsetting records. For example:

RecordFilter f = new DateRecordFilter(); // class implements RecordFilter
if (f.matches(recordStore.getRecord(theRecordID)) == true)
DoSomethingUseful(theRecordID);

Methods

matches(byte[])
public boolean matches (byte[] candidate)

Returns true if the candidate matches the implemented criterion.

Parameters:
candidate - The record to consider. Within this method, the application must treat this parameter as
read-only.

Returns: true if the candidate matches the implemented criterion.

Member Summary
Methods

boolean public boolean matches (byte[] candidate)

RecordFilter javax.microedition.rms
matches(byte[])

100 Mobile Information Device Profile (JSR-37) December 15, 2000

December 15, 2000 Mobile Information Device Profile (JSR-37) 101

javax.microedition.rms
RecordListener
Syntax
public interface RecordListener

Description

A listener interface for receiving Record Changed/Added/Deleted events from a record store.

Methods

recordAdded(RecordStore, int)
public void recordAdded (RecordStore recordStore, int recordId)

Called when a record has been added to a record store.

Parameters:
recordStore - the RecordStore in which the record is stored.

recordId - the recordId of the record that has been added.

recordChanged(RecordStore, int)
public void recordChanged (RecordStore recordStore, int recordId)

Called after a record in a record store has been changed. If the implementation of this method retrieves the
record, it will receive the changed version.

Parameters:
recordStore - the RecordStore in which the record is stored.

recordId - the recordId of the record that has been changed.

recordDeleted(RecordStore, int)
public void recordDeleted (RecordStore recordStore, int recordId)

Called after a record has been deleted from a record store. If the implementation of this method tries to
retrieve the record from the record store, an InvalidRecordIDException will be thrown.

Member Summary
Methods

void public void recordAdded (RecordStore recordStore,
int recordId)

void public void recordChanged (RecordStore recordStore,
int recordId)

void public void recordDeleted (RecordStore recordStore,
int recordId)

RecordListener javax.microedition.rms
recordDeleted(RecordStore, int)

102 Mobile Information Device Profile (JSR-37) December 15, 2000

Parameters:
recordStore - the RecordStore in which the record was stored.

recordId - the recordId of the record that has been deleted.

December 15, 2000 Mobile Information Device Profile (JSR-37) 103

javax.microedition.rms
RecordStore
Syntax
public class RecordStore

java.lang.Object
|
+--javax.microedition.rms.RecordStore

Description
A class representing a record store. A record store consists of a collection of records which will remain persis-
tent across multiple invocations of the MIDlet. The platform is responsible for making its best effort to maintain
the integrity of the MIDlet's record stores throughout the normal use of the platform, including reboots, battery
changes, etc.

Record stores are created in platform-dependent locations, which are not exposed to the MIDlets. The naming
space for record stores is controlled at the MIDlet suite granularity. MIDlets within a MIDlet suite are allowed
to create multiple record stores, as long as they are each given different names. When a MIDlet suite is removed
from a platform all the record stores associated with its MIDlets will also be removed. These APIs only allow
the manipulation of the MIDlet suite's own record stores, and does not provide any mechanism for record shar-
ing between MIDlets in different MIDlet suites. MIDlets within a MIDlet suite can access each other's record
stores directly.

Record store names are case sensitive and may consist of any combination of up to 32 Unicode characters.
Record store names must be unique within the scope of a given MIDlet suite. In other words, a MIDlets within
a MIDlet suite are is not allowed to create more than one record store with the same name, however a MIDlet in
different one MIDlet suites are is allowed to each have a record store with the same name as a MIDlet in another
MIDlet suite. In that case, the record stores are still distinct and separate.

No locking operations are provided in this API. Record store implementations ensure that all individual record
store operations are atomic, synchronous, and serialized, so no corruption will occur with multiple accesses.
However, if a MIDlet uses multiple threads to access a record store, it is the MIDlet's responsibility to coordi-
nate this access or unintended consequences may result. Similarly, if a platform performs transparent synchro-
nization of a record store, it is the platform's responsibility to enforce exclusive access to the record store
between the MIDlet and synchronization engine.

Records are uniquely identified within a given record store by their recordId, which is an integer value. This
recordId is used as the primary key for the records. The first record created in a record store will have recordId
equal to one (1). Each subsequent record added to a RecordStore will be assigned a recordId one greater than
the record added before it. That is, if two records are added to a record store, and the first has a recordId of 'n',
the next will have a recordId of 'n + 1'. MIDlets can create other indices by using the RecordEnumeration
class.

This record store uses long integers for time/date stamps, in the format used by System.currentTimeMillis().
The record store is time stamped with the last time it was modified. The record store also maintains a version,
which is an integer that is incremented for each operation that modifies the contents of the RecordStore. These
are useful for synchronization engines as well as other things.

Member Summary
Methods

RecordStore javax.microedition.rms
addRecord(byte[], int, int)

104 Mobile Information Device Profile (JSR-37) December 15, 2000

Methods

addRecord(byte[], int, int)
public int addRecord (byte[] data, int offset, int numBytes)

Adds a new record to the record store. The recordId for this new record is returned. This is a blocking
atomic operation. The record is written to persistent storage before the method returns.

Parameters:
data - The data to be stored in this record. If the record is to have zero-length data (no data), this
parameter may be null.

offset - The index into the data buffer of the first relevant byte for this record.

int public int addRecord (byte[] data, int offset, int numBytes)

void public void addRecordListener (RecordListener listener)

void public void closeRecordStore ()

void public void deleteRecord (int recordId)

void public static void deleteRecordStore (String recordStoreName)

RecordEnumeration public RecordEnumeration enumerateRecords (RecordFilter fil-
ter, RecordComparator comparator, boolean keepUpdated)

long public long getLastModified ()

String public String getName ()

int public int getNextRecordID ()

int public int getNumRecords ()

byte[] public byte[] getRecord (int recordId)

int public int getRecord (int recordId, byte[] buffer,
int offset)

int public int getRecordSize (int recordId)

int public int getSize ()

int public int getSizeAvailable ()

int public int getVersion ()

String[] public static String[] listRecordStores ()

RecordStore public static RecordStore openRecordStore (String record-
StoreName, boolean createIfNecessary)

void public void removeRecordListener (RecordListener listener)

void public void setRecord (int recordId, byte[] newData,
int offset, int numBytes)

Inherited Member Summary

Methods inherited from class Object
equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(long), wait(long, int)

Member Summary

 javax.microedition.rms RecordStore
addRecordListener(RecordListener)

December 15, 2000 Mobile Information Device Profile (JSR-37) 105

numBytes - The number of bytes of the data buffer to use for this record (may be zero).

Returns: the recordId for the new record.

Throws: RecordStoreNotOpenException - if the record store is not open.

RecordStoreException - if a different record store-related exception occurred.

RecordStoreFullException - if the operation cannot be completed because the record store has
no more room.

addRecordListener(RecordListener)
public void addRecordListener (RecordListener listener)

Adds the specified RecordListener. If the specified listener is already registered, it will not be added a sec-
ond time. When a record store is closed, all listeners are removed.

Parameters:
listener - the RecordChangedListener.

closeRecordStore()
public void closeRecordStore ()

This method is called when the MIDlet requests to have the record store closed. Note that the record store
will not actually be closed until closeRecordStore() is called as many times as openRecordStore() was
called. In other words, the MIDlet needs to make a balanced number of close calls as open calls before the
record store is closed.

When the record store is closed, all listeners are removed. If the MIDlet attempts to perform operations on
the RecordStore object after it has been closed, the methods will throw a RecordStoreNotOpenException.

Throws: RecordStoreNotOpenException - if the record store is not open.

RecordStoreException - if a different record store-related exception occurred.

deleteRecord(int)
public void deleteRecord (int recordId)

The record is deleted from the record store. The recordId for this record is NOT reused.

Parameters:
recordId - The ID of the record to delete.

Throws: RecordStoreNotOpenException - if the record store is not open.

InvalidRecordIDException - if the recordId is invalid.

RecordStoreException - if a general record store exception occurs.

RecordStore javax.microedition.rms
deleteRecordStore(String)

106 Mobile Information Device Profile (JSR-37) December 15, 2000

deleteRecordStore(String)
public static void deleteRecordStore (String recordStoreName)

Deletes the named record store. MIDlet suites are only allowed to operate on their own record stores,
including deletions. If the record store is currently open by a MIDlet when this method is called, or if the
named record store does not exist, a RecordStoreException will be thrown.

Parameters:
recordStoreName - The MIDlet suite unique record store to delete.

Throws: RecordStoreException - if a record store-related exception occurred.

RecordStoreNotFoundException - if the record store could not be found.

enumerateRecords(RecordFilter, RecordComparator, boolean)
public RecordEnumeration enumerateRecords (RecordFilter filter,

RecordComparator comparator, boolean keepUpdated)

Returns an enumeration for traversing a set of records in the record store in an optionally specified order.

The filter, if non-null, will be used to determine what subset of the record store records will be used.

The comparator, if non-null, will be used to determine the order in which the records are returned.

If both the filter and comparator are null, the enumeration will traverse all records in the record store in an
undefined order. This is the most efficient way to traverse all of the records in a record store.

The first call to RecordEnumeration.nextRecord() returns the record data from the first record in
the sequence. Subsequent calls to RecordEnumeration.nextRecord() return the next consecutive
record's data. To return the record data from the previous consecutive from any given point in the enumera-
tion, call previousRecord(). On the other hand, if after creation the first call is to previous-
Record(), the record data of the last element of the enumeration will be returned. Each subsequent call to
previousRecord() will step backwards through the sequence.

Parameters:
filter - if non-null, will be used to determine what subset of the record store records will be used.

comparator - if non-null, will be used to determine the order in which the records are returned.

keepUpdated - If true, the enumerator will keep its enumeration current with any changes in the
records of the record store. Use with caution as there are possible performance consequences. If false
the enumeration will not be kept current and may return recordIds for records that have been deleted or
miss records that are added later. It may also return records out of order that have been modified after
the enumeration was built. Note that any changes to records in the record store are accurately reflected
when the record is later retrieved, either directly or through the enumeration. The thing that is risked by
setting this parameter false is the filtering and sorting order of the enumeration when records are
modified, added, or deleted.

Returns: an enumeration for traversing a set of records in the record store in an optionally specified
order.

Throws: RecordStoreNotOpenException - if the record store is not open.

See Also: public void rebuild ()

 javax.microedition.rms RecordStore
getLastModified()

December 15, 2000 Mobile Information Device Profile (JSR-37) 107

getLastModified()
public long getLastModified ()

Returns the last time the record store was modified, in the format used by System.currentTimeMillis().

Returns: the last time the record store was modified, in the format used by System.currentTimeMillis().

Throws: RecordStoreNotOpenException - if the record store is not open.

getName()
public String getName ()

Returns the name of this RecordStore.

Returns: the name of this RecordStore.

Throws: RecordStoreNotOpenException - if the record store is not open.

getNextRecordID()
public int getNextRecordID ()

Returns the recordId of the next record to be added to the record store. This can be useful for setting up
pseudo-relational relationships. That is, if you have two or more record stores whose records need to refer
to one another, you can predetermine the recordIds of the records that will be created in one record store,
before populating the fields and allocating the record in another record store. Note that the recordId
returned is only valid while the record store remains open and until a call to addRecord().

Returns: the recordId of the next record to be added to the record store.

Throws: RecordStoreNotOpenException - if the record store is not open.

RecordStoreException - if a different record store-related exception occurred.

getNumRecords()
public int getNumRecords ()

Returns the number of records currently in the record store.

Returns: the number of records currently in the record store.

Throws: RecordStoreNotOpenException - if the record store is not open.

getRecord(int)
public byte[] getRecord (int recordId)

Returns a copy of the data stored in the given record.

Parameters:
recordId - The ID of the record to use in this operation.

Returns: the data stored in the given record. Note that if the record has no data, this method will return
null.

Throws: RecordStoreNotOpenException - if the record store is not open.

RecordStore javax.microedition.rms
getRecord(int, byte[], int)

108 Mobile Information Device Profile (JSR-37) December 15, 2000

InvalidRecordIDException - if the recordId is invalid.

RecordStoreException - if a general record store exception occurs.

getRecord(int, byte[], int)
public int getRecord (int recordId, byte[] buffer, int offset)

Returns the data stored in the given record.

Parameters:
recordId - The ID of the record to use in this operation.

buffer - The byte array in which to copy the data.

offset - The index into the buffer in which to start copying.

Returns: the number of bytes copied into the buffer, starting at index offset.

Throws: RecordStoreNotOpenException - if the record store is not open.

InvalidRecordIDException - if the recordId is invalid.

RecordStoreException - if a general record store exception occurs.

ArrayIndexOutOfBoundsException - if the record is larger than the buffer supplied.

getRecordSize(int)
public int getRecordSize (int recordId)

Returns the size (in bytes) of the MIDlet data available in the given record.

Parameters:
recordId - The ID of the record to use in this operation.

Returns: the size (in bytes) of the MIDlet data available in the given record.

Throws: RecordStoreNotOpenException - if the record store is not open.

InvalidRecordIDException - if the recordId is invalid.

RecordStoreException - if a general record store exception occurs.

getSize()
public int getSize ()

Returns the amount of space, in bytes, that the record store occupies. The size returned includes any over-
head associated with the implementation, such as the data structures used to hold the state of the record
store, etc.

Returns: the size of the record store in bytes.

Throws: RecordStoreNotOpenException - if the record store is not open.

 javax.microedition.rms RecordStore
getSizeAvailable()

December 15, 2000 Mobile Information Device Profile (JSR-37) 109

getSizeAvailable()
public int getSizeAvailable ()

Returns the amount of additional room (in bytes) available for this record store to grow. Note that this is not
necessarily the amount of extra MIDlet-level data which can be stored, as implementations may store addi-
tional data structures with each record to support integration with native applications, synchronization, etc.

Returns: the amount of additional room (in bytes) available for this record store to grow.

Throws: RecordStoreNotOpenException - if the record store is not open.

getVersion()
public int getVersion ()

Each time a record store is modified (record added, modified, deleted), it's version is incremented. This can
be used by MIDlets to quickly tell if anything has been modified. The initial version number is implementa-
tion dependent. The increment is a positive integer greater than 0. The version number only increases as the
RecordStore is updated.

Returns: the current record store version.

Throws: RecordStoreNotOpenException - if the record store is not open.

listRecordStores()
public static String[] listRecordStores ()

Returns an array of the names of record stores owned by the MIDlet suite. Note that if the MIDlet suite does
not have any record stores, this function will return NULL. The order of RecordStore names returned is
implementation dependent.

Returns: an array of the names of record stores owned by the MIDlet suite. Note that if the MIDlet suite
does not have any record stores, this function will return NULL.

openRecordStore(String, boolean)
public static RecordStore openRecordStore (String recordStoreName,

boolean createIfNecessary)

Open (and possibly create) a record store associated with the given MIDlet suite. If this method is called by
a MIDlet when the record store is already open by a MIDlet in the MIDlet suite, this method returns a refer-
ence to the same RecordStore object.

Parameters:
recordStoreName - The MIDlet suite unique name, not to exceed 32 characters, of the record
store.

createIfNecessary - If true, the record store will be created if necessary.

Returns: The RecordStore object for the record store.

Throws: RecordStoreException - if a record store-related exception occurred.

RecordStoreNotFoundException - if the record store could not be found.

RecordStore javax.microedition.rms
removeRecordListener(RecordListener)

110 Mobile Information Device Profile (JSR-37) December 15, 2000

RecordStoreFullException - if the operation cannot be completed because the record store is
full.

removeRecordListener(RecordListener)
public void removeRecordListener (RecordListener listener)

Removes the specified RecordListener. If the specified listener is not registered, this method does nothing.

Parameters:
listener - the RecordChangedListener.

setRecord(int, byte[], int, int)
public void setRecord (int recordId, byte[] newData, int offset, int numBytes)

Sets the data in the given record to that passed in. After this method returns, a call to getRecord(int
recordId) will return an array of numBytes size containing the data supplied here.

Parameters:
recordId - The ID of the record to use in this operation.

newData - The new data to store in the record.

offset - The index into the data buffer of the first relevant byte for this record.

numBytes - The number of bytes of the data buffer to use for this record.

Throws: RecordStoreNotOpenException - if the record store is not open.

InvalidRecordIDException - if the recordId is invalid.

RecordStoreException - if a general record store exception occurs.

RecordStoreFullException - if the operation cannot be completed because the record store has
no more room.

December 15, 2000 Mobile Information Device Profile (JSR-37) 111

javax.microedition.rms
RecordStoreException
Syntax
public class RecordStoreException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--javax.microedition.rms.RecordStoreException

Direct Known Subclasses: InvalidRecordIDException, RecordStoreFullException,
RecordStoreNotFoundException, RecordStoreNotOpenException

Description

Thrown to indicate a general exception occurred in a record store operation.

Constructors

RecordStoreException()
public RecordStoreException ()

Constructs a new RecordStoreException with no detail message.

Member Summary
Constructors

public RecordStoreException ()

public RecordStoreException (String message)

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), printStackTrace(), toString()

Methods inherited from class Object
equals(Object), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(long),
wait(long, int)

RecordStoreException javax.microedition.rms
RecordStoreException(String)

112 Mobile Information Device Profile (JSR-37) December 15, 2000

RecordStoreException(String)
public RecordStoreException (String message)

Constructs a new RecordStoreException with the specified detail message.

Parameters:
message - the detail message.

December 15, 2000 Mobile Information Device Profile (JSR-37) 113

javax.microedition.rms
RecordStoreFullException
Syntax
public class RecordStoreFullException extends RecordStoreException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--RecordStoreException

|
+--javax.microedition.rms.RecordStoreFullException

Description
Thrown to indicate an operation could not be completed because the record store system storage is full.

Constructors

RecordStoreFullException()
public RecordStoreFullException ()

Constructs a new RecordStoreFullException with no detail message.

Member Summary
Constructors

public RecordStoreFullException ()

public RecordStoreFullException (String message)

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), printStackTrace(), toString()

Methods inherited from class Object
equals(Object), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(long),
wait(long, int)

RecordStoreFullException javax.microedition.rms
RecordStoreFullException(String)

114 Mobile Information Device Profile (JSR-37) December 15, 2000

RecordStoreFullException(String)
public RecordStoreFullException (String message)

Constructs a new RecordStoreFullException with the specified detail message.

Parameters:
message - the detail message.

December 15, 2000 Mobile Information Device Profile (JSR-37) 115

javax.microedition.rms
RecordStoreNotFoundException
Syntax
public class RecordStoreNotFoundException extends RecordStoreException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--RecordStoreException

|
+--javax.microedition.rms.RecordStoreNotFoundException

Description
Thrown to indicate an operation could not be completed because the record store could not be found.

Constructors

RecordStoreNotFoundException()
public RecordStoreNotFoundException ()

Constructs a new RecordStoreNotFoundException with no detail message.

Member Summary
Constructors

public RecordStoreNotFoundException ()

public RecordStoreNotFoundException (String message)

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), printStackTrace(), toString()

Methods inherited from class Object
equals(Object), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(long),
wait(long, int)

RecordStoreNotFoundException javax.microedition.rms
RecordStoreNotFoundException(String)

116 Mobile Information Device Profile (JSR-37) December 15, 2000

RecordStoreNotFoundException(String)
public RecordStoreNotFoundException (String message)

Constructs a new RecordStoreNotFoundException with the specified detail message.

Parameters:
message - the detail message.

December 15, 2000 Mobile Information Device Profile (JSR-37) 117

javax.microedition.rms
RecordStoreNotOpenException
Syntax
public class RecordStoreNotOpenException extends RecordStoreException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--RecordStoreException

|
+--javax.microedition.rms.RecordStoreNotOpenException

Description
Thrown to indicate that an operation was attempted on a closed record store.

Constructors

RecordStoreNotOpenException()
public RecordStoreNotOpenException ()

Constructs a new RecordStoreNotOpenException with no detail message.

Member Summary
Constructors

public RecordStoreNotOpenException ()

public RecordStoreNotOpenException (String message)

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), printStackTrace(), toString()

Methods inherited from class Object
equals(Object), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(long),
wait(long, int)

RecordStoreNotOpenException javax.microedition.rms
RecordStoreNotOpenException(String)

118 Mobile Information Device Profile (JSR-37) December 15, 2000

RecordStoreNotOpenException(String)
public RecordStoreNotOpenException (String message)

Constructs a new RecordStoreNotOpenException with the specified detail message.

Parameters:
message - the detail message.

December 15, 2000 Mobile Information Device Profile (JSR-37) 119

Package
javax.microedition.midlet
Description
The MIDlet package defines Mobile Information Device Profile applications and the interactions between the
application and the environment in which the application runs. An application of the Mobile Information
Device Profile is a MIDlet.

The MIDlet lifecycle defines the protocol between a MIDlet and its environment through the following:

A simple well-defined state machine

A concise definition of the MIDlet's states

APIs to signal changes between the states

MIDlet Lifecycle Definitions

The following definitions are used in the MIDlet lifecycle:

application management software - a part of the device's software operating environment that manages
MIDlets. It directs the MIDlet through state changes.

MIDlet - a MIDP application on the device. The MIDlet can signal the application management software
about whether is it wants to run or has completed. A MIDlet has no knowledge of other MIDlets through the
MIDlet API.

MIDlet States - the states a MIDlet can have are defined by the transitions allowable through the
MIDlet interface. More specific application states are known only to the application.

MIDlet States

The MIDlet state machine is designed to ensure that the behavior of an application is consistent and as close as
possible to what device manufactures and users expect, specifically:

The perceived startup latency of an application should be very short.

It should be possible to put an application into a state where it is not active.

It should be possible to destroy an application at any time.

The valid states for MIDlets are:

State Name Description

javax.microedition.midlet

120 Mobile Information Device Profile (JSR-37) December 15, 2000

The states and transitions for a MIDlet are:

Paused The MIDlet is initialized and is quiescent. It should not be hold-
ing or using any shared resources. This state is entered:

After the MIDlet has been created using new. The public no-
argument constructor for the MIDlet is called and returns with-
out throwing an exception. The application typically does little or
no initialization in this step. If an exception occurs, the applica-
tion immediately enters the Destroyed state and is discarded.

From the Active state after the MIDlet.pauseApp() method
returns successfully.

From the Active state when the MIDlet.notifyPaused()
method returns successfully to the MIDlet.

From the Active state if startApp throws an MIDletState-
ChangeException.

Active The MIDlet is functioning normally. This state is entered:

Just prior to calling the MIDlet.startApp() method.
Destroyed The MIDlet has released all of its resources and terminated.

This state is entered:

When the MIDlet.destroyApp() method returns except in
the case when the unconditional argument is false and a
MIDletStateChangeException is thrown. The
destroyApp() method shall release all resources held and per-
form any necessary cleanup so it may be garbage collected.

When the MIDlet.notifyDestroyed() method returns
successfully to the application. The MIDlet must have per-
formed the equivalent of the MIDlet.destroyApp() method
before calling MIDlet.notifyDestroyed().

Note: This state is only entered once.

 javax.microedition.midlet

December 15, 2000 Mobile Information Device Profile (JSR-37) 121

MIDlet Lifecycle Model

A typical sequence of MIDlet execution is:

Application Management Software MIDlet

The application management software creates a new
instance of a MIDlet.

The default (no argument)
constructor for the
MIDlet is called; it is in
the Paused state.

The application management software has decided
that it is an appropriate time for the MIDlet to run,
so it calls the MIDlet.startApp method for it to
enter the Active state.

The MIDlet acquires
any resources it needs and
begins to perform its ser-
vice.

The application management software no longer
needs the application be active, so it signals it to stop
performing its service by calling the MIDlet.pau-
seApp method.

The MIDlet stops per-
forming its service and
might choose to release
some resources it cur-
rently holds.

The application management software has determined
that the MIDlet is no longer needed, or perhaps
needs to make room for a higher priority application
in memory, so it signals the MIDlet that it is a can-
didate to be destroyed by calling the
MIDlet.destroyApp method.

If it has been designed to
do so, the MIDlet saves
state or user preferences
and performs clean up.

javax.microedition.midlet

122 Mobile Information Device Profile (JSR-37) December 15, 2000

MIDlet Interface

pauseApp - the MIDlet should release any temporary resources and become passive

startApp - the MIDlet should acquire any resources it needs and resume

destroyApp - the MIDlet should save any state and release all resources

notifyDestroyed - the MIDlet notifies the application management software that it has cleaned up and is
done

notifyPaused - the MIDlet notifies the application management software that it has paused

resumeRequest - the MIDlet asks application management software to be started again

getAppProperty - gets a named property from the MIDlet

Application Implementation Notes

The application should take measures to avoid race conditions in the execution of the MIDlet methods. Each
method may need to synchronize itself with the other methods avoid concurrency problems during state
changes.

Example MIDlet Application

The example uses the MIDlet lifecycle to do a simple measurement of the speed of the Java Virtual Machine.

 javax.microedition.midlet

December 15, 2000 Mobile Information Device Profile (JSR-37) 123

import javax.microedition.midlet.*;
/**
* An example MIDlet runs a simple timing test
* When it is started by the application management software it will
* create a separate thread to do the test.
* When it finishes it will notify the application management software
* it is done.
* Refer to the startApp, pauseApp, and destroyApp
* methods so see how it handles each requested transition.
*/

public class MethodTimes extends MIDlet implements Runnable {
// The state for the timing thread.
Thread thread;
/**
* Start creates the thread to do the timing.
* It should return immediately to keep the dispatcher
* from hanging.
*/

public void startApp() {
thread = new Thread(this);
thread.start();

}
/**
* Pause signals the thread to stop by clearing the thread field.
* If stopped before done with the iterations it will
* be restarted from scratch later.
*/

public void pauseApp() {
thread = null;

}
/**
* Destroy must cleanup everything. The thread is signaled
* to stop and no result is produced.
*/

public void destroyApp(boolean unconditional) {
thread = null;

}
/**

* Run the timing test, measure how long it takes to
* call a empty method 1000 times.
* Terminate early if the current thread is no longer
* the thread from the
*/

public void run() {
Thread curr = Thread.currentThread(); // Remember which thread is current
long start = System.currentTimeMillis();
for (int i = 0; i < 1000000 && thread == curr; i++) {

empty();
}
long end = System.currentTimeMillis();
// Check if timing was aborted, if so just exit
// The rest of the application has already become quiescent.
if (thread != curr) {

return;
}
long millis = end - start;
// Reporting the elapsed time is outside the scope of this example.
// All done cleanup and quit
destroyApp(true);
notifyDestroyed();

}
/**
* An Empty method.
*/

void empty() {
}

}

javax.microedition.midlet

124 Mobile Information Device Profile (JSR-37) December 15, 2000

Class Summary

Classes
MIDlet A MIDLet is a MID Profile application.
MIDletStateChangeEx-
ception

Signals that a requested MIDlet state change failed.

December 15, 2000 Mobile Information Device Profile (JSR-37) 125

javax.microedition.midlet
MIDlet
Syntax
public abstract class MIDlet

java.lang.Object
|
+--javax.microedition.midlet.MIDlet

Description
A MIDLet is a MID Profile application. The application must extend this class to allow the application man-
agement software to control the MIDlet and to be able to retrieve properties from the application descriptor and
notify and request state changes. The methods of this class allow the application management software to cre-
ate, start, pause, and destroy a MIDlet. A MIDlet is a set of classes designed to be run and controlled by the
application management software via this interface. The states allow the application management software to
manage the activities of multiple MIDlets within a runtime environment. It can select which MIDlets are
active at a given time by starting and pausing them individually. The application management software main-
tains the state of the MIDlet and invokes methods on the MIDlet to change states. The MIDlet implements
these methods to update its internal activities and resource usage as directed by the application management
software. The MIDlet can initiate some state changes itself and notifies the application management software
of those state changes by invoking the appropriate methods.

Note: The methods on this interface signal state changes. The state change is not considered complete until the
state change method has returned. It is intended that these methods return quickly.

Member Summary
Constructors

protected MIDlet ()

Methods
void protected abstract void destroyApp (boolean unconditional)

String public final String getAppProperty (String key)

void public final void notifyDestroyed ()

void public final void notifyPaused ()

void protected abstract void pauseApp ()

void public final void resumeRequest ()

void protected abstract void startApp ()

Inherited Member Summary

Methods inherited from class Object
equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(long), wait(long, int)

MIDlet javax.microedition.midlet
MIDlet()

126 Mobile Information Device Profile (JSR-37) December 15, 2000

Constructors

MIDlet()
protected MIDlet ()

Protected constructor for subclasses.

Methods

destroyApp(boolean)
protected abstract void destroyApp (boolean unconditional)

Signals the MIDlet to terminate and enter the Destroyed state. In the destroyed state the MIDlet must
release all resources and save any persistent state. This method may be called from the Paused or Active
states.

MIDlets should perform any operations required before being terminated, such as releasing resources or
saving preferences or state.

NOTE: The MIDlet can request that it not enter the Destroyed state by throwing an MIDletState-
ChangeException. This is only a valid response if the unconditional flag is set to false. If it is
true the MIDlet is assumed to be in the Destroyed state regardless of how this method terminates. If it is
not an unconditional request, the MIDlet can signify that it wishes to stay in its current state by throwing
the MIDletStateChangeException. This request may be honored and the destroy() method
called again at a later time.

If a Runtime exception occurs during destroyApp then they are ignored and the MIDlet is put into the
Destroyed state.

Parameters:
unconditional - If true when this method is called, the MIDlet must cleanup and release all
resources. If false the MIDlet may throw MIDletStateChangeException to indicate it does
not want to be destroyed at this time.

Throws: <code>MIDletStateChangeException</code> - is thrown if the MIDlet wishes to
continue to execute (Not enter the Destroyed state). This exception is ignored if unconditional is
equal to true.

MIDletStateChangeException

getAppProperty(String)
public final String getAppProperty (String key)

Provides a MIDlet with a mechanism to retrieve named properties from the application management soft-
ware. The properties are retrieved from the combination of the application descriptor file and the manifest.
If an attributes in the descriptor has the same name as an attribute in the manifest the value from the
descriptor is used and the value from the manifest is ignored.

 javax.microedition.midlet MIDlet
notifyDestroyed()

December 15, 2000 Mobile Information Device Profile (JSR-37) 127

Parameters:
key - the name of the property

Returns: A string with the value of the property. null is returned if no value is available for the key.

Throws: <code>NullPointerException</code> - is thrown if key is null.

notifyDestroyed()
public final void notifyDestroyed ()

Used by an MIDlet to notify the application management software that it has entered into the Destroyed
state. The application management software will not call the MIDlet's destroyApp method, and all
resources held by the MIDlet will be considered eligible for reclamation. The MIDlet must have per-
formed the same operations (clean up, releasing of resources etc.) it would have if the
MIDlet.destroyApp() had been called.

notifyPaused()
public final void notifyPaused ()

Notifies the application management software that the MIDlet does not want to be active and has entered
the Paused state. Invoking this method will have no effect if the MIDlet is destroyed, or if it has not yet
been started.

It may be invoked by the MIDlet when it is in the Active state.

If a MIDlet calls notifyPaused(), in the future its startApp() method may be called make it
active again, or its destroyApp() method may be called to request it to destroy itself.

pauseApp()
protected abstract void pauseApp ()

Signals the MIDlet to stop and enter the Paused state. In the Paused state the MIDlet must release
shared resources and become quiescent. This method will only be called called when the MIDlet is in the
Active state.

If a Runtime exception occurs during pauseApp the MIDlet will be destroyed immediately. Its
destroyApp will be called allowing the MIDlet to cleanup.

resumeRequest()
public final void resumeRequest ()

Provides a MIDlet with a mechanism to indicate that it is interested in entering the Active state. Calls to
this method can be used by the application management software to determine which applications to move
to the Active state.

When the application management software decides to activate this application it will call the startApp
method.

The application is generally in the Paused state when this is called. Even in the paused state the application
may handle asynchronous events such as timers or callbacks.

MIDlet javax.microedition.midlet
startApp()

128 Mobile Information Device Profile (JSR-37) December 15, 2000

startApp()
protected abstract void startApp ()

Signals the MIDlet that it has entered the Active state. In the Active state the MIDlet may hold resources.
The method will only be called when the MIDlet is in the Paused state.

Two kinds of failures can prevent the service from starting, transient and non-transient. For transient fail-
ures the MIDletStateChangeException exception should be thrown. For non-transient failures the
notifyDestroyed method should be called.

If a Runtime exception occurs during startApp the MIDlet will be destroyed immediately. Its
destroyApp will be called allowing the MIDlet to cleanup.

Throws: <code>MIDletStateChangeException</code> - is thrown if the MIDlet cannot
start now but might be able to start at a later time.

MIDletStateChangeException

December 15, 2000 Mobile Information Device Profile (JSR-37) 129

javax.microedition.midlet
MIDletStateChangeException
Syntax
public class MIDletStateChangeException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--javax.microedition.midlet.MIDletStateChangeException

Description

Signals that a requested MIDlet state change failed. This exception is thrown by the MIDlet in response to
state change calls into the application via the MIDlet interface

See Also: MIDlet

Constructors

MIDletStateChangeException()
public MIDletStateChangeException ()

Constructs an exception with no specified detail message.

Member Summary
Constructors

public MIDletStateChangeException ()

public MIDletStateChangeException (String s)

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), printStackTrace(), toString()

Methods inherited from class Object
equals(Object), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(long),
wait(long, int)

MIDletStateChangeException javax.microedition.midlet
MIDletStateChangeException(String)

130 Mobile Information Device Profile (JSR-37) December 15, 2000

MIDletStateChangeException(String)
public MIDletStateChangeException (String s)

Constructs an exception with the specified detail message.

Parameters:
s - the detail message

December 15, 2000 Mobile Information Device Profile (JSR-37) 131

Package
javax.microedition.io
Description
MID Profile includes networking support based on the GenericConnection framework from the Con-
nected Limited Device Configuration.

In addition to the javax.microedition.io classes specified in the Connected Limited Device Configura-
tion the Mobile Information Device Profile includes the following interface for HTTP protocol access over the
network.

• javax.microedition.io.HttpConnection

Class Summary

Interfaces
HttpConnection This interface defines the necessary methods and constants for an HTTP connection.

javax.microedition.io

132 Mobile Information Device Profile (JSR-37) December 15, 2000

December 15, 2000 Mobile Information Device Profile (JSR-37) 133

javax.microedition.io
HttpConnection
Syntax
public interface HttpConnection extends javax.microedition.io.ContentConnection

All Superinterfaces: Connection, ContentConnection, InputConnection, OutputCon-
nection, StreamConnection

Description
This interface defines the necessary methods and constants for an HTTP connection.

HTTP is a request-response protocol in which the parameters of request must be set before the request is sent.
The connection exists in one of three states:

• Setup, in which the connection has not been made to the server.
• Connected, in which the connection has been made, request parameters have been sent and the response is

expected.
• Closed, in which the connection has been closed and the methods will throw an IOException if called.

The following methods may be invoked only in the Setup state:

• setRequestMethod
• setRequestProperty

The transition from Setup to Connected is caused by any method that requires data to be sent to or received
from the server.

HttpConnection javax.microedition.io

134 Mobile Information Device Profile (JSR-37) December 15, 2000

The following methods cause the transition to the Connected state

• openInputStream
• openOutputStream
• openDataInputStream
• openDataOutputStream
• getLength
• getType
• getEncoding
• getHeaderField
• getResponseCode
• getResponseMessage
• getHeaderFieldInt
• getHeaderFieldDate
• getExpiration
• getDate
• getLastModified
• getHeaderField
• getHeaderFieldKey

The following methods may be invoked while the connection is open.

• close
• getRequestMethod
• getRequestProperty
• getURL
• getProtocol
• getHost
• getFile
• getRef
• getPort
• getQuery

Example using StreamConnection

Simple read of a url using StreamConnection. No HTTP specific behavior is needed or used.

Connector.open is used to open url and a StreamConnection is returned. From the StreamConnection the Input-
Stream is opened. It is used to read every character until end of file (-1). If an exception is thrown the connec-
tion and stream are closed.

 javax.microedition.io HttpConnection

December 15, 2000 Mobile Information Device Profile (JSR-37) 135

void getViaStreamConnection(String url) throws IOException {
StreamConnection c = null;
InputStream s = null;
try {

c = (StreamConnection)Connector.open(url);
s = c.openInputStream();
int ch;
while ((ch = s.read()) != -1) {

...
}

} finally {
if (s != null)

s.close();
if (c != null)

c.close();
}

}

Example using ContentConnection

Simple read of a url using ContentConnection. No HTTP specific behavior is needed or used.

Connector.open is used to open url and a ContentConnection is returned. The ContentConnection may be able
to provide the length. If the length is available, it is used to read the data in bulk. From the ContentConnection
the InputStream is opened. It is used to read every character until end of file (-1). If an exception is thrown the
connection and stream are closed.

void getViaContentConnection(String url) throws IOException {
ContentConnection c = null;
InputStream is = null;
try {

c = (ContentConnection)Connector.open(url);
int len = (int)c.getLength();
if (len > 0) {

is = c.openInputStream();
byte[] data = new byte[len];
int actual = is.read(data);
...

} else {
int ch;
while ((ch = is.read()) != -1) {

...
}

}
} finally {

if (is != null)
is.close();

if (c != null)
c.close();

}
}

Example using HttpConnection

Read the HTTP headers and the data using HttpConnection.

Connector.open is used to open url and a HttpConnection is returned. The HTTP headers are read and pro-
cessed. If the length is available, it is used to read the data in bulk. From the HttpConnection the InputStream is
opened. It is used to read every character until end of file (-1). If an exception is thrown the connection and
stream are closed.

HttpConnection javax.microedition.io

136 Mobile Information Device Profile (JSR-37) December 15, 2000

void getViaHttpConnection(String url) throws IOException {
HttpConnection c = null;
InputStream is = null;
try {

c = (HttpConnection)Connector.open(url);

// Getting the InputStream will open the connection
// and read the HTTP headers. They are stored until
// requested.
is = c.openInputStream();

// Get the ContentType
String type = c.getType();

// Get the length and process the data
int len = (int)c.getLength();
if (len > 0) {

byte[] data = new byte[len];
int actual = is.read(data);
...

} else {
int ch;
while ((ch = is.read()) != -1) {

...
}

}
} finally {

if (is != null)
is.close();

if (c != null)
c.close();

}
}

Example using POST with HttpConnection

Post a request with some headers and content to the server and process the headers and content.

Connector.open is used to open url and a HttpConnection is returned. The request method is set to POST and
request headers set. A simple command is written and flushed. The HTTP headers are read and processed. If the
length is available, it is used to read the data in bulk. From the HttpConnection the InputStream is opened. It is
used to read every character until end of file (-1). If an exception is thrown the connection and stream is closed.

 javax.microedition.io HttpConnection

December 15, 2000 Mobile Information Device Profile (JSR-37) 137

void postViaHttpConnection(String url) throws IOException {
HttpConnection c = null;
InputStream is = null;
OutputStream os = null;
try {

c = (HttpConnection)Connector.open(url);
// Set the request method and headers
c.setRequestMethod(HttpConnection.POST);
c.setRequestProperty("If-Modified-Since",

"29 Oct 1999 19:43:31 GMT");
c.setRequestProperty("User-Agent",

"Profile/MIDP-1.0 Configuration/CLDC-1.0");
c.setRequestProperty("Content-Language", "en-US");
// Getting the output stream may flush the headers
os = c.openOutputStream();
os.write("LIST games\n".getBytes());
os.flush(); // Optional, openInputStream will flush
// Opening the InputStream will open the connection
// and read the HTTP headers. They are stored until
// requested.
is = c.openInputStream();
// Get the ContentType
String type = c.getType();
processType(type);
// Get the length and process the data
int len = (int)c.getLength();
if (len > 0) {

byte[] data = new byte[len];
int actual = is.read(data);
process(data);

} else {
int ch;
while ((ch = is.read()) != -1) {

process((byte)ch);
}

}
} finally {

if (is != null)
is.close();

if (os != null)
os.close();

if (c != null)
c.close();

}
}

Simplified Stream Methods on Connector

Please note the following: The Connector class defines the following convenience methods for retrieving an
input or output stream directly for a specified URL:

• InputStream openDataInputStream(String url)
• DataInputStream openDataInputStream(String url)
• OutputStream openOutputStream(String url)
• DataOutputStream openDataOutputStream(String url)

Please be aware that using these methods implies certain restrictions. You will not get a reference to the actual
connection, but rather just references to the input or output stream of the connection. Not having a reference to

HttpConnection javax.microedition.io

138 Mobile Information Device Profile (JSR-37) December 15, 2000

the connection means that you will not be able to manipulate or query the connection directly. This in turn
means that you will not be able to call any of the following methods:

• getRequestMethod()
• setRequestMethod()
• getRequestProperty()
• setRequestProperty()
• getLength()
• getType()
• getEncoding()
• getHeaderField()
• getResponseCode()
• getResponseMessage()
• getHeaderFieldInt
• getHeaderFieldDate
• getExpiration
• getDate
• getLastModified
• getHeaderField
• getHeaderFieldKey

Member Summary
Fields

String public static final String GET

String public static final String HEAD

int public static final int HTTP_ACCEPTED

int public static final int HTTP_BAD_GATEWAY

int public static final int HTTP_BAD_METHOD

int public static final int HTTP_BAD_REQUEST

int public static final int HTTP_CLIENT_TIMEOUT

int public static final int HTTP_CONFLICT

int public static final int HTTP_CREATED

int public static final int HTTP_ENTITY_TOO_LARGE

int public static final int HTTP_EXPECT_FAILED

int public static final int HTTP_FORBIDDEN

int public static final int HTTP_GATEWAY_TIMEOUT

int public static final int HTTP_GONE

int public static final int HTTP_INTERNAL_ERROR

int public static final int HTTP_LENGTH_REQUIRED

int public static final int HTTP_MOVED_PERM

int public static final int HTTP_MOVED_TEMP

int public static final int HTTP_MULT_CHOICE

int public static final int HTTP_NO_CONTENT

int public static final int HTTP_NOT_ACCEPTABLE

int public static final int HTTP_NOT_AUTHORITATIVE

int public static final int HTTP_NOT_FOUND

int public static final int HTTP_NOT_IMPLEMENTED

int public static final int HTTP_NOT_MODIFIED

 javax.microedition.io HttpConnection

December 15, 2000 Mobile Information Device Profile (JSR-37) 139

int public static final int HTTP_OK

int public static final int HTTP_PARTIAL

int public static final int HTTP_PAYMENT_REQUIRED

int public static final int HTTP_PRECON_FAILED

int public static final int HTTP_PROXY_AUTH

int public static final int HTTP_REQ_TOO_LONG

int public static final int HTTP_RESET

int public static final int HTTP_SEE_OTHER

int public static final int HTTP_TEMP_REDIRECT

int public static final int HTTP_UNAUTHORIZED

int public static final int HTTP_UNAVAILABLE

int public static final int HTTP_UNSUPPORTED_RANGE

int public static final int HTTP_UNSUPPORTED_TYPE

int public static final int HTTP_USE_PROXY

int public static final int HTTP_VERSION

String public static final String POST

Methods
long public long getDate ()

long public long getExpiration ()

String public String getFile ()

String public String getHeaderField (int n)

String public String getHeaderField (String name)

long public long getHeaderFieldDate (String name, long def)

int public int getHeaderFieldInt (String name, int def)

String public String getHeaderFieldKey (int n)

String public String getHost ()

long public long getLastModified ()

int public int getPort ()

String public String getProtocol ()

String public String getQuery ()

String public String getRef ()

String public String getRequestMethod ()

String public String getRequestProperty (String key)

int public int getResponseCode ()

String public String getResponseMessage ()

String public String getURL ()

void public void setRequestMethod (String method)

void public void setRequestProperty (String key, String value)

Inherited Member Summary

Methods inherited from interface ContentConnection
getEncoding(), getLength(), getType()

Methods inherited from interface InputConnection
openDataInputStream(), openInputStream()

Methods inherited from interface Connection

Member Summary

HttpConnection javax.microedition.io
GET

140 Mobile Information Device Profile (JSR-37) December 15, 2000

Fields

GET
public static final String GET

HTTP Get method

HEAD
public static final String HEAD

HTTP Head method

HTTP_ACCEPTED
public static final int HTTP_ACCEPTED

202: The request has been accepted for processing, but the processing has not been completed.

HTTP_BAD_GATEWAY
public static final int HTTP_BAD_GATEWAY

502: The server, while acting as a gateway or proxy, received an invalid response from the upstream server
it accessed in attempting to fulfill the request.

HTTP_BAD_METHOD
public static final int HTTP_BAD_METHOD

405: The method specified in the Request-Line is not allowed for the resource identified by the Request-
URI.

HTTP_BAD_REQUEST
public static final int HTTP_BAD_REQUEST

400: The request could not be understood by the server due to malformed syntax.

close()

Methods inherited from interface OutputConnection
openDataOutputStream(), openOutputStream()

Inherited Member Summary

 javax.microedition.io HttpConnection
HTTP_CLIENT_TIMEOUT

December 15, 2000 Mobile Information Device Profile (JSR-37) 141

HTTP_CLIENT_TIMEOUT
public static final int HTTP_CLIENT_TIMEOUT

408: The client did not produce a request within the time that the server was prepared to wait. The client
MAY repeat the request without modifications at any later time.

HTTP_CONFLICT
public static final int HTTP_CONFLICT

409: The request could not be completed due to a conflict with the current state of the resource.

HTTP_CREATED
public static final int HTTP_CREATED

201: The request has been fulfilled and resulted in a new resource being created.

HTTP_ENTITY_TOO_LARGE
public static final int HTTP_ENTITY_TOO_LARGE

413: The server is refusing to process a request because the request entity is larger than the server is willing
or able to process.

HTTP_EXPECT_FAILED
public static final int HTTP_EXPECT_FAILED

417: The expectation given in an Expect request-header field could not be met by this server, or, if the
server is a proxy, the server has unambiguous evidence that the request could not be met by the next-hop
server.

HTTP_FORBIDDEN
public static final int HTTP_FORBIDDEN

403: The server understood the request, but is refusing to fulfill it. Authorization will not help and the
request SHOULD NOT be repeated.

HTTP_GATEWAY_TIMEOUT
public static final int HTTP_GATEWAY_TIMEOUT

504: The server, while acting as a gateway or proxy, did not receive a timely response from the upstream
server specified by the URI or some other auxiliary server it needed to access in attempting to complete the
request.

HttpConnection javax.microedition.io
HTTP_GONE

142 Mobile Information Device Profile (JSR-37) December 15, 2000

HTTP_GONE
public static final int HTTP_GONE

410: The requested resource is no longer available at the server and no forwarding address is known.

HTTP_INTERNAL_ERROR
public static final int HTTP_INTERNAL_ERROR

500: The server encountered an unexpected condition which prevented it from fulfilling the request.

HTTP_LENGTH_REQUIRED
public static final int HTTP_LENGTH_REQUIRED

411: The server refuses to accept the request without a defined Content- Length.

HTTP_MOVED_PERM
public static final int HTTP_MOVED_PERM

301: The requested resource has been assigned a new permanent URI and any future references to this
resource SHOULD use one of the returned URIs.

HTTP_MOVED_TEMP
public static final int HTTP_MOVED_TEMP

302: The requested resource resides temporarily under a different URI.

HTTP_MULT_CHOICE
public static final int HTTP_MULT_CHOICE

300: The requested resource corresponds to any one of a set of representations, each with its own specific
location, and agent- driven negotiation information is being provided so that the user (or user agent) can
select a preferred representation and redirect its request to that location.

HTTP_NO_CONTENT
public static final int HTTP_NO_CONTENT

204: The server has fulfilled the request but does not need to return an entity-body, and might want to return
updated meta-information.

HTTP_NOT_ACCEPTABLE
public static final int HTTP_NOT_ACCEPTABLE

406: The resource identified by the request is only capable of generating response entities which have con-
tent characteristics not acceptable according to the accept headers sent in the request.

 javax.microedition.io HttpConnection
HTTP_NOT_AUTHORITATIVE

December 15, 2000 Mobile Information Device Profile (JSR-37) 143

HTTP_NOT_AUTHORITATIVE
public static final int HTTP_NOT_AUTHORITATIVE

203: The returned meta-information in the entity-header is not the definitive set as available from the origin
server.

HTTP_NOT_FOUND
public static final int HTTP_NOT_FOUND

404: The server has not found anything matching the Request-URI. No indication is given of whether the
condition is temporary or permanent.

HTTP_NOT_IMPLEMENTED
public static final int HTTP_NOT_IMPLEMENTED

501: The server does not support the functionality required to fulfill the request.

HTTP_NOT_MODIFIED
public static final int HTTP_NOT_MODIFIED

304: If the client has performed a conditional GET request and access is allowed, but the document has not
been modified, the server SHOULD respond with this status code.

HTTP_OK
public static final int HTTP_OK

200: The request has succeeded.

HTTP_PARTIAL
public static final int HTTP_PARTIAL

206: The server has fulfilled the partial GET request for the resource.

HTTP_PAYMENT_REQUIRED
public static final int HTTP_PAYMENT_REQUIRED

402: This code is reserved for future use.

HTTP_PRECON_FAILED
public static final int HTTP_PRECON_FAILED

412: The precondition given in one or more of the request-header fields evaluated to false when it was
tested on the server.

HttpConnection javax.microedition.io
HTTP_PROXY_AUTH

144 Mobile Information Device Profile (JSR-37) December 15, 2000

HTTP_PROXY_AUTH
public static final int HTTP_PROXY_AUTH

407: This code is similar to 401 (Unauthorized), but indicates that the client must first authenticate itself
with the proxy.

HTTP_REQ_TOO_LONG
public static final int HTTP_REQ_TOO_LONG

414: The server is refusing to service the request because the Request-URI is longer than the server is will-
ing to interpret.

HTTP_RESET
public static final int HTTP_RESET

205: The server has fulfilled the request and the user agent SHOULD reset the document view which
caused the request to be sent.

HTTP_SEE_OTHER
public static final int HTTP_SEE_OTHER

303: The response to the request can be found under a different URI and SHOULD be retrieved using a
GET method on that resource.

HTTP_TEMP_REDIRECT
public static final int HTTP_TEMP_REDIRECT

307: The requested resource resides temporarily under a different URI.

HTTP_UNAUTHORIZED
public static final int HTTP_UNAUTHORIZED

401: The request requires user authentication. The response MUST include a WWW-Authenticate header
field containing a challenge applicable to the requested resource.

HTTP_UNAVAILABLE
public static final int HTTP_UNAVAILABLE

503: The server is currently unable to handle the request due to a temporary overloading or maintenance of
the server.

 javax.microedition.io HttpConnection
HTTP_UNSUPPORTED_RANGE

December 15, 2000 Mobile Information Device Profile (JSR-37) 145

HTTP_UNSUPPORTED_RANGE
public static final int HTTP_UNSUPPORTED_RANGE

416: A server SHOULD return a response with this status code if a request included a Range request-header
field , and none of the range-specifier values in this field overlap the current extent of the selected resource,
and the request did not include an If-Range request-header field.

HTTP_UNSUPPORTED_TYPE
public static final int HTTP_UNSUPPORTED_TYPE

415: The server is refusing to service the request because the entity of the request is in a format not sup-
ported by the requested resource for the requested method.

HTTP_USE_PROXY
public static final int HTTP_USE_PROXY

305: The requested resource MUST be accessed through the proxy given by the Location field.

HTTP_VERSION
public static final int HTTP_VERSION

505: The server does not support, or refuses to support, the HTTP protocol version that was used in the
request message.

POST
public static final String POST

HTTP Post method

Methods

getDate()
public long getDate ()

Returns the value of the date header field.

Returns: the sending date of the resource that the URL references, or 0 if not known. The value returned
is the number of milliseconds since January 1, 1970 GMT.

Throws: IOException - if an error occurred connecting to the server.

HttpConnection javax.microedition.io
getExpiration()

146 Mobile Information Device Profile (JSR-37) December 15, 2000

getExpiration()
public long getExpiration ()

Returns the value of the expires header field.

Returns: the expiration date of the resource that this URL references, or 0 if not known. The value is the
number of milliseconds since January 1, 1970 GMT.

Throws: IOException - if an error occurred connecting to the server.

getFile()
public String getFile ()

Returns the file portion of the URL of this HttpConnection.

Returns: the file portion of the URL of this HttpConnection. null is returned if there is no file.

getHeaderField(int)
public String getHeaderField (int n)

Gets a header field value by index.

Parameters:
n - the index of the header field

Returns: the value of the nth header field or null if the array index is out of range. An empty String is
returned if the field does not have a value.

Throws: IOException - if an error occurred connecting to the server.

getHeaderField(String)
public String getHeaderField (String name)

Returns the value of the named header field.

Parameters:
name - of a header field.

Returns: the value of the named header field, or null if there is no such field in the header.

Throws: IOException - if an error occurred connecting to the server.

getHeaderFieldDate(String, long)
public long getHeaderFieldDate (String name, long def)

Returns the value of the named field parsed as date. The result is the number of milliseconds since January
1, 1970 GMT represented by the named field.

This form of getHeaderField exists because some connection types (e.g., http-ng) have pre-parsed
headers. Classes for that connection type can override this method and short-circuit the parsing.

Parameters:
name - the name of the header field.

 javax.microedition.io HttpConnection
getHeaderFieldInt(String, int)

December 15, 2000 Mobile Information Device Profile (JSR-37) 147

def - a default value.

Returns: the value of the field, parsed as a date. The value of the def argument is returned if the field is
missing or malformed.

Throws: IOException - if an error occurred connecting to the server.

getHeaderFieldInt(String, int)
public int getHeaderFieldInt (String name, int def)

Returns the value of the named field parsed as a number.

This form of getHeaderField exists because some connection types (e.g., http-ng) have pre-parsed
headers. Classes for that connection type can override this method and short-circuit the parsing.

Parameters:
name - the name of the header field.

def - the default value.

Returns: the value of the named field, parsed as an integer. The def value is returned if the field is
missing or malformed.

Throws: IOException - if an error occurred connecting to the server.

getHeaderFieldKey(int)
public String getHeaderFieldKey (int n)

Gets a header field key by index.

Parameters:
n - the index of the header field

Returns: the key of the nth header field or null if the array index is out of range.

Throws: IOException - if an error occurred connecting to the server.

getHost()
public String getHost ()

Returns the host information of the URL of this HttpConnection. e.g. host name or IPv4 address

Returns: the host information of the URL of this HttpConnection. null is returned if there is no
host.

getLastModified()
public long getLastModified ()

Returns the value of the last-modified header field. The result is the number of milliseconds since
January 1, 1970 GMT.

Returns: the date the resource referenced by this HttpConnection was last modified, or 0 if not
known.

Throws: IOException - if an error occurred connecting to the server.

HttpConnection javax.microedition.io
getPort()

148 Mobile Information Device Profile (JSR-37) December 15, 2000

getPort()
public int getPort ()

Returns the network port number of the URL for this HttpConnection.

Returns: the network port number of the URL for this HttpConnection. The default HTTP port
number (80) is returned if there was no port number in the string passed to Connector.open.

getProtocol()
public String getProtocol ()

Returns the protocol name of the URL of this HttpConnection. e.g., http or https

Returns: the protocol of the URL of this HttpConnection.

getQuery()
public String getQuery ()

Returns the query portion of the URL of this HttpConnection. RFC2396 defines the query component
as the text after the last question-mark (?) character in the URL.

Returns: the query portion of the URL of this HttpConnection. null is returned if there is no value.

getRef()
public String getRef ()

Returns the ref portion of the URL of this HttpConnection. RFC2396 specifies the optional fragment
identifier as the the text after the crosshatch (#) character in the URL. This information may be used by the
user agent as additional reference information after the resource is successfully retrieved. The format and
interpretation of the fragment identifier is dependent on the media type[RFC2046] of the retrieved informa-
tion.

Returns: the ref portion of the URL of this HttpConnection. null is returned if there is no value.

getRequestMethod()
public String getRequestMethod ()

Get the current request method. e.g. HEAD, GET, POST The default value is GET.

Returns: the HTTP request method

getRequestProperty(String)
public String getRequestProperty (String key)

Returns the value of the named general request property for this connection.

 javax.microedition.io HttpConnection
getResponseCode()

December 15, 2000 Mobile Information Device Profile (JSR-37) 149

Parameters:
key - the keyword by which the request property is known (e.g., "accept").

Returns: the value of the named general request property for this connection. If there is no key with the
specified name then null is returned.

getResponseCode()
public int getResponseCode ()

Returns the HTTP response status code. It parses responses like:
HTTP/1.0 200 OK
HTTP/1.0 401 Unauthorized

and extracts the ints 200 and 401 respectively. from the response (i.e., the response is not valid HTTP).

Returns: the HTTP Status-Code or -1 if no status code can be discerned.

Throws: IOException - if an error occurred connecting to the server.

getResponseMessage()
public String getResponseMessage ()

Gets the HTTP response message, if any, returned along with the response code from a server. From
responses like:
HTTP/1.0 200 OK
HTTP/1.0 404 Not Found

Extracts the Strings "OK" and "Not Found" respectively. Returns null if none could be discerned from the
responses (the result was not valid HTTP).

Returns: the HTTP response message, or null

Throws: IOException - if an error occurred connecting to the server.

getURL()
public String getURL ()

Return a string representation of the URL for this connection.

Returns: the string representation of the URL for this connection.

setRequestMethod(String)
public void setRequestMethod (String method)

Set the method for the URL request, one of:

• GET
• POST
• HEAD

are legal, subject to protocol restrictions. The default method is GET.

HttpConnection javax.microedition.io
setRequestProperty(String, String)

150 Mobile Information Device Profile (JSR-37) December 15, 2000

Parameters:
method - the HTTP method

Throws: IOException - if the method cannot be reset or if the requested method isn't valid for HTTP.

setRequestProperty(String, String)
public void setRequestProperty (String key, String value)

Sets the general request property. If a property with the key already exists, overwrite its value with the new
value.

NOTE: HTTP requires all request properties which can legally have multiple instances with the same key
to use a comma-separated list syntax which enables multiple properties to be appended into a single prop-
erty.

Parameters:
key - the keyword by which the request is known (e.g., "accept").

value - the value associated with it.

Throws: IOException - is thrown if the connection is in the connected state.

December 15, 2000 Mobile Information Device Profile (JSR-37) 151

Package
javax.microedition.lcdui
Description
The UI API provides a set of features for implementation of user interfaces for MIDP applications.

For more information see Chapter 9 of MIDP specification.

Screen-based approach

The central abstraction of the MIDP's UI is that of a screen. A screen is an object that encapsulates device-spe-
cific graphics rendering user input. Only one screen may be visible at the time, and the user can only traverse
through the items on that screen. The screen takes care of all events that occur as the user navigates in the
screen, with only higher-level events being passed on to the application.

The application can switch the screens by calling public void setCurrent (Displayable
nextDisplayable) .

It is recommended that the screens are simple and contain as few UI components as reasonable.

Two-layer approach

The MIDP UI is logically composed of two APIs: the high-level API and the low-level API.

The high-level API is designed for business applications whose client parts run on MIDs. For these applications,
portability across devices is important. In order to achieve this portability, the high-level API employs a high
level of abstraction and provides very little control over look and feel. This abstraction is further manifested in
the following three ways:

The actual drawing to the MID's display is performed by the implementation. Applications do not define the
visual appearance (e.g. shape, color, font, etc.) of the components. Navigation, scrolling, and other primitive
interaction is encapsulated by the implementation, and the application is not aware of these interactions. Appli-
cations can not access concrete input devices like specific individual keys.

In other words, when using the high-level API, it is assumed that the underlying implementation will do the
necessary adaptation to device's hardware and native UI style.

The screens implementing the high-level API are the subclasses of Screen .

The low-level API, on the other hand, provides quite little abstraction. This API is designed for applications that
need precise placement and control of graphic elements and access to low-level input events. Some applications
also need to access special, device-specific features. A typical example of such an application would be a game.
Using the low-level API, an application can:

Have full control of what is drawn on the display. Listen for primitive events like key presses and releases.
Access concrete keys and other input devices

Classes Canvas and Graphics implement the low-level API.

Applications that program to the low-level API are not guaranteed to be portable, since the low-level API pro-
vides means to access details that are specific to a particular device. If the application does not use these fea-
tures, the applications will portable and it is recommended that the applications stick to the platform-
independent part of the low-level API when ever possible. This means that the applications should not directly
assume any other keys than defined in class Canvas, and should not blindly trust on any specific screen size.
Rather, the application game-event mechanism should be used instead of referring to concrete keys, and appli-
cation should ask and adjust to the size of the display.

javax.microedition.lcdui

152 Mobile Information Device Profile (JSR-37) December 15, 2000

Class Summary

Interfaces
Choice Choice defines an API for a user interface components implementing selection from

predefined number of choices.
CommandListener This interface is used by applications which need to receive high-level events from the

implementation.
ItemStateListener This interface is used by applications which need to receive events that indicate

changes in the internal state of the interactive items within a Form screen.

Classes
Alert An alert is a screen that shows data to the user and waits for a certain period of time

before proceeding to the next screen.
AlertType The AlertType provides an indication of the nature of alerts.
Canvas The Canvas class is a base class for writing applications that need to handle low-level

events and to issue graphics calls for drawing to the display.
ChoiceGroup A ChoiceGroup is a group of selectable elements intended to be placed within a

Form .
Command The Command class is a construct that encapsulates the semantic information of an

action.
DateField A DateField is an editable component for presenting date and time (calendar) informa-

tion that may be placed into a Form.
Display Display represents the manager of the display and input devices of the system.
Displayable An object that has the capability of being placed on the display.
Font The Font class represents fonts and font metrics.
Form A Form is a Screen that contains an arbitrary mixture of items: images, read-only text

fields, editable text fields, editable date fields, gauges, and choice groups.
Gauge The Gauge class implements a bar graph display of a value intended for use in a form.
Graphics Provides simple 2D geometric rendering capability.
Image The Image class is used to hold graphical image data.
ImageItem A class that provides layout control when Image objects are added to a Form or to an

Alert .
Item A superclass for components that can be added to a Form and Alert .
List The List class is a Screen containing list of choices.
Screen The common superclass of all high-level user interface classes.
StringItem An item that can contain a string.
TextBox The TextBox class is a Screen that allows the user to enter and edit text.
TextField A TextField is an editable text component that may be placed into a Form .
Ticker Implements a "ticker-tape," a piece of text that runs continuously across the display.

December 15, 2000 Mobile Information Device Profile (JSR-37) 153

javax.microedition.lcdui
Alert
Syntax
public class Alert extends Screen

Displayable
|
+--Screen

|
+--javax.microedition.lcdui.Alert

Description

An alert is a screen that shows data to the user and waits for a certain period of time before proceeding to the
next screen. An alert is an ordinary screen that can contain text (String) and image, and which handles events
like other screens.

The intended use of Alert is to inform the user about errors and other exceptional conditions.

The application can set the alert time to be infinity with setTimeout(Alert.FOREVER) in which case
the Alert is considered to be modal and the implementation provide a feature that allows the user to "dismiss"
the alert, whereupon the next screen is displayed as if the timeout had expired immediately.

If an application specifies an alert to be of a timed variety and gives it too much content such that it must scroll,
then it automatically becomes a modal alert.

An alert may have an AlertType associated with it to provide an indication of the nature of the alert. The
implementation may use this type to play an appropriate sound when the Alert is presented to the user. See
public boolean playSound (Display display) .

Alerts do not accept application-defined commands.

If the Alert is visible on the display when changes to its contents are requested by the application, the changes
take place automatically. That is, applications need not take any special action to refresh a Alert's display after
its contents have been modified.

See Also: AlertType

Member Summary
Fields

int public static final int FOREVER

Constructors
public Alert (java.lang.String title)

public Alert (java.lang.String title,
java.lang.String alertText, Image alertImage,
AlertType alertType)

Methods
void public void addCommand (Command cmd)

int public int getDefaultTimeout ()

Image public Image getImage ()

String public java.lang.String getString ()

int public int getTimeout ()

AlertType public AlertType getType ()

Alert javax.microedition.lcdui
FOREVER

154 Mobile Information Device Profile (JSR-37) December 15, 2000

Fields

FOREVER
public static final int FOREVER

FOREVER indicates that an Alert is kept visible until the user dismisses it. It is used as a value for the
parameter to public void setTimeout (int time) to indicate that the alert is modal. Instead of
waiting for a specified period of time, a modal Alert will wait for the user to take some explicit action, such
as pressing a button, before proceeding to the next screen.

Value -2 is assigned to FOREVER.

Constructors

Alert(String)
public Alert (java.lang.String title)

Constructs a new, empty Alert object with the given title. If null is passed, the Alert will have no title. Call-
ing this constructor is equivalent to calling

Alert(title, null, null, null)

Parameters:
title - the title string, or null

See Also: public Alert (java.lang.String title,
java.lang.String alertText, Image alertImage, AlertType alertType)

void public void setCommandListener (CommandListener l)

void public void setImage (Image img)

void public void setString (java.lang.String str)

void public void setTimeout (int time)

void public void setType (AlertType type)

Inherited Member Summary

Methods inherited from class Screen
public Ticker getTicker (), public java.lang.String getTitle (), public void set-
Ticker (Ticker ticker), public void setTitle (java.lang.String s)

Methods inherited from class Displayable
public boolean isShown (), public void removeCommand (Command cmd)

Member Summary

 javax.microedition.lcdui Alert
Alert(String, String, Image, AlertType)

December 15, 2000 Mobile Information Device Profile (JSR-37) 155

Alert(String, String, Image, AlertType)
public Alert (java.lang.String title, java.lang.String alertText, Image alertImage,

AlertType alertType)

Constructs a new Alert object with the given title, content string and image, and alert type. The layout of the
contents is implementation dependent. The timeout value of this new alert is the same value that is returned
by getDefaultTimeout(). If an image is provided it must be immutable. The handling and behavior of spe-
cific AlertTypes is described in AlertType . Null is allowed as the value of the alertType parameter and
indicates that the Alert is not to have a specific alert type.

Parameters:
title - the title string, or null if there is no title

alertText - the string contents, or null if there is no string

alertImage - the image contents, or null if there is no image

alertType - the type of the Alert, or null if the Alert has no specific type

Throws: IllegalArgumentException - if the image is mutable

Methods

addCommand(Command)
public void addCommand (Command cmd)

Commands are not allowed on Alerts, so this method will always throw IllegalStateException whenever it
is called.

Overrides: public void addCommand (Command cmd) in class Displayable

Parameters:
cmd - the Command

Throws: IllegalStateException - always

getDefaultTimeout()
public int getDefaultTimeout ()

Gets the default time for showing an Alert. This is either a positive value, which indicates a time in milli-
seconds, or the special value FOREVER, which indicates that Alerts are modal by default. The value
returned will vary across implementations and is presumably tailored to be suitable for each.

Returns: default timeout in milliseconds, or FOREVER

getImage()
public Image getImage ()

Gets the Image used in the Alert.

Returns: the Alert's image, or null if there is no image

Alert javax.microedition.lcdui
getString()

156 Mobile Information Device Profile (JSR-37) December 15, 2000

getString()
public java.lang.String getString ()

Gets the text string used in the Alert.

Returns: the Alert's text string, or null if there is no text

getTimeout()
public int getTimeout ()

Gets the time this Alert will be shown. This is either a positive value, which indicates a time in millisec-
onds, or the special value FOREVER, which indicates that this Alert is modal.

Returns: timeout in milliseconds, or FOREVER

getType()
public AlertType getType ()

Gets the type of the Alert.

Returns: a reference to an instance of AlertType, or null if the Alert has no specific type

setCommandListener(CommandListener)
public void setCommandListener (CommandListener l)

Listeners are not allowed on Alerts, so this method will always throw IllegalStateException whenever it is
called.

Overrides: public void setCommandListener (CommandListener l) in class
Displayable

Parameters:
l - the Listener

Throws: IllegalStateException - always

setImage(Image)
public void setImage (Image img)

Sets the Image used in the Alert.

Parameters:
img - the Alert's image, or null if there is no image

Throws: IllegalArgumentException - if img is mutable

setString(String)
public void setString (java.lang.String str)

Sets the text string used in the Alert.

 javax.microedition.lcdui Alert
setTimeout(int)

December 15, 2000 Mobile Information Device Profile (JSR-37) 157

Parameters:
str - the Alert's text string, or null if there is no text

setTimeout(int)
public void setTimeout (int time)

Set the time for which the Alert is to be shown. This must either be a positive time value in milliseconds, or
the special value FOREVER.

Parameters:
time - timeout in milliseconds, or FOREVER

Throws: IllegalArgumentException - if time is not positive and is not FOREVER

setType(AlertType)
public void setType (AlertType type)

Sets the type of the Alert. The handling and behavior of specific AlertTypes is described in AlertType .

Parameters:
type - an AlertType, or null if the Alert has no specific type

158 Mobile Information Device Profile (JSR-37) December 15, 2000

javax.microedition.lcdui
AlertType
Syntax
public class AlertType

javax.microedition.lcdui.AlertType

Description

The AlertType provides an indication of the nature of alerts. Alerts are used by an application to present various
kinds of information to the user. An AlertType may be used to directly signal the user without changing the cur-
rent Displayable. The playSound method can be used to spontaneously generate a sound to alert the user. For
example, a game using a Canvas can use playSound to indicate success or progress. The predefined types are
INFO, WARNING, ERROR, ALARM, and CONFIRMATION.

See Also: Alert

Fields

ALARM
public static final AlertType ALARM

An ALARM AlertType is a hint to alert the user to an event for which the user has previously requested to
be notified. For example, the message might say, "Staff meeting in five minutes."

CONFIRMATION
public static final AlertType CONFIRMATION

A CONFIRMATION AlertType is a hint to confirm user actions. For example, "Saved!" might be shown to
indicate that a Save operation has completed.

Member Summary
Fields

AlertType public static final AlertType ALARM

AlertType public static final AlertType CONFIRMATION

AlertType public static final AlertType ERROR

AlertType public static final AlertType INFO

AlertType public static final AlertType WARNING

Constructors
protected AlertType ()

Methods
boolean public boolean playSound (Display display)

 javax.microedition.lcdui AlertType
ERROR

December 15, 2000 Mobile Information Device Profile (JSR-37) 159

ERROR
public static final AlertType ERROR

An ERROR AlertType is a hint to alert the user to an erroneous operation. For example, an error alert might
show the message, "There is not enough room to install the application."

INFO
public static final AlertType INFO

An INFO AlertType typically provides non-threatening information to the user. For example, a simple
splash screen might be an INFO AlertType.

WARNING
public static final AlertType WARNING

A WARNING AlertType is a hint to warn the user of a potentially dangerous operation. For example, the
warning message may contain the message, "Warning: this operation will erase your data."

Constructors

AlertType()
protected AlertType ()

Protected constructor for subclasses.

Methods

playSound(Display)
public boolean playSound (Display display)

Alert the user by playing the sound for this AlertType. The AlertType instance is used as a hint by the
device to generate an appropriate sound. Instances other than those predefined above may be ignored. The
actual sound made by the device, if any, is determined by the device. The device may ignore the request,
use the same sound for several AlertTypes or use any other means suitable to alert the user.

Parameters:
display - to which the AlertType's sound should be played.

Returns: true if the user was alerted, false otherwise.

Throws: NullPointerException - if display is null

160 Mobile Information Device Profile (JSR-37) December 15, 2000

javax.microedition.lcdui
Canvas
Syntax
public abstract class Canvas extends Displayable

Displayable
|
+--javax.microedition.lcdui.Canvas

Description
The Canvas class is a base class for writing applications that need to handle low-level events and to issue graph-
ics calls for drawing to the display. Game applications will likely make heavy use of the Canvas class. From an
application development perspective, the Canvas class is interchangeable with standard Screen classes, so an
application may mix and match Canvas with high-level screens as needed. For example, a List screen may be
used to select the track for a racing game, and a Canvas subclass would implement the actual game.

The Canvas provides the developer with methods to handle game actions, key events, and pointer events (if sup-
ported by the device). Methods are also provided to identify the device's capabilities and keyboard mapping.
The key events are reported with respect to key codes, which are directly bound to concrete keys on the device,
use of which may hinder portability. Portable applications should use game actions instead of key codes.

Like other subclasses of Displayable, the Canvas class allows the application to register a listener for com-
mands. Unlike other Displayables, however, the Canvas class requires applications to subclass it in order to use
it. The paint() method is declared abstract, and so the application must provide an implementation in its sub-
class. Other event-reporting methods are not declared abstract, and their default implementations are
empty (that is, they do nothing). This allows the application to override only the methods that report events in
which the application has interest.

This is in contrast to the Screen classes, which allow the application to define listeners and to register them
with instances of the Screen classes. This style is not used for the Canvas class, because several new listener
interfaces would need to be created, one for each kind of event that might be delivered. An alternative would be
to have fewer listener interfaces, but this would require listeners to filter out events in which they had no inter-
est.

Key Events

Applications receive keystroke events in which the individual keys are named within a space of key codes.
Every key for which events are reported to MIDP applications is assigned a key code. The key code values are
unique for each hardware key unless two keys are obvious synonyms for each other. MIDP defines the follow-
ing key codes: public static final int KEY_NUM0 , public static final int
KEY_NUM1 , public static final int KEY_NUM2 , public static final int
KEY_NUM3 , public static final int KEY_NUM4 , public static final int
KEY_NUM5 , public static final int KEY_NUM6 , public static final int
KEY_NUM7 , public static final int KEY_NUM8 , public static final int
KEY_NUM9 , public static final int KEY_STAR , and public static final int
KEY_POUND . (These key codes correspond to keys on a ITU-T standard telephone keypad.) Other keys may be
present on the keyboard, and they will generally have key codes distinct from those list above. In order to guar-
antee portability, applications should use only the standard key codes.

The standard key codes' values are equal to the Unicode encoding for the character that represents the key. If the
device includes any other keys that have an obvious correspondence to a Unicode character, their key code val-
ues should equal the Unicode encoding for that character. For keys that have no corresponding Unicode charac-

 javax.microedition.lcdui Canvas
playSound(Display)

December 15, 2000 Mobile Information Device Profile (JSR-37) 161

ter, the implementation must use negative values. Zero is defined to be an invalid key code. It is thus possible
for an application to convert a keyCode into a Unicode character using the following code:

if (keyCode > 0) {
char ch = (char)keyCode;
// ...

}

This technique is useful only in certain limited cases. In particular, it is not sufficient for full textual input,
because it does not handle upper and lower case, keyboard shift states, and characters that require more than one
keystroke to enter. For textual input, applications should always use TextBox or TextField objects.

It is sometimes useful to find the name of a key in order to display a message about this key. In this case the
application may use the public java.lang.String getKeyName (int keyCode) method to find
a key's name.

Game Actions

Portable applications that need arrow key events and gaming-related events should use game actions in prefer-
ence to key codes and key names. MIDP defines the following game actions: public static final int
UP , public static final int DOWN , public static final int LEFT , public static
final int RIGHT , public static final int FIRE , public static final int
GAME_A , public static final int GAME_B , public static final int GAME_C , and
public static final int GAME_D .

Each key code may be mapped to at most one game action. However, a game action may be associated with
more than one key code. The application can translate a key code into a game action using the public int
getGameAction (int keyCode) method, and it can translate a key code into a game action using the
public int getKeyCode (int gameAction) method. The implementation is not allowed to change
the mapping of game actions and key codes during execution of the application.

Portable applications that are interested in using game actions should translate every key event into a game
action by calling the public int getGameAction (int keyCode) method and then testing the
result. For example, on some devices the game actions UP, DOWN, LEFT and RIGHT may be mapped to 4-
way navigation arrow keys. In this case, getKeyCode(UP) would return a device-dependent code for the up-
arrow key. On other devices, a possible mapping would be on the number keys 2, 4, 6 and 8. In this case, get-
KeyCode(UP) would return KEY_NUM2. In both cases, the getGameAction() method would return the LEFT
game action when the user presses the key that is a "natural left" on her device.

Commands

It is also possible for the user to issue Command when a canvas is current. Commands are mapped to keys and
menus in a device-specific fashion. For some devices the keys used for commands may overlap with the keys
that will deliver key code events to the canvas. If this is the case, the device will provide a means transparent to
the application that enables the user to select a mode that determines whether these keys will deliver commands
or key code events to the application. The set of key code events available to a canvas will not change depend-
ing upon the number of commands that are present on the canvas. Game developers should be aware that access
to commands will vary greatly across devices, and that requiring the user to issue commands during game play
may have a great impact on the ease with which the game can be played.

Event Delivery

Canvas javax.microedition.lcdui
playSound(Display)

162 Mobile Information Device Profile (JSR-37) December 15, 2000

The Canvas object defines several methods that are called by the implementation. These methods are primarily
for the purpose of delivering events to the application, and so they are referred to as event delivery methods. The
set of methods is:

• showNotify()
• hideNotify()
• keyPressed()
• keyRepeated()
• keyReleased()
• pointerPressed()
• pointerDragged()
• pointerReleased()
• paint()
• the CommandListener's commandAction() method

These methods are all called serially. That is, the implementation will never call an event delivery method
before a prior call to any of the event delivery methods has returned. (But see the note below.) This property
enables applications to be assured that processing of a previous user event will have completed before the next
event is delivered.

Calls to the run() method of Runnable objects passed to Display.callSerially() will also be serialized along with
calls to the event delivery methods. See public void callSerially (javax.microedi-
tion.lcdui.Runnable r) for further information.

Note: The serviceRepaints() method is an exception to this rule, as it blocks until paint() is called and returns.
This will occur even if the application is in the midst of one of the event delivery methods and it calls service-
Repaints().

The key-related, pointer-related, paint(), and commandAction() methods will only be called while the Canvas is
actually visible on the output device. These methods will therefore only be called on this Canvas object only
after a call to showNotify() and before a call to hideNotify(). After hideNotify() has been called, none of the
key, pointer, paint, and commandAction() methods will be called until after a subsequent call to showNotify()
has returned. A call to a sun() method resulting from callSerially() may occur irrespective of calls to showNo-
tify() and hideNotify().

The protected void showNotify () method is called prior to the Canvas actually being made visible
on the display, and the protected void hideNotify () method is called after the Canvas has been
removed from the display. The visibility state of a Canvas (or any other Displayable object) may be queried
through the use of the public boolean isShown () method. The change in visibility state of a Canvas
may be caused by the application management software moving MIDlets between foreground and background
states, or by the system obscuring the Canvas with system screens. Thus, the calls to showNotify() and hideNo-
tify() are not under the control of the MIDlet and may occur fairly frequently. Application developers are
encouraged to perform expensive setup and teardown tasks outside the showNotify() and hideNotify() methods
in order to make them as lightweight as possible.

Member Summary
Fields

int public static final int DOWN

int public static final int FIRE

int public static final int GAME_A

 javax.microedition.lcdui Canvas
playSound(Display)

December 15, 2000 Mobile Information Device Profile (JSR-37) 163

int public static final int GAME_B

int public static final int GAME_C

int public static final int GAME_D

int public static final int KEY_NUM0

int public static final int KEY_NUM1

int public static final int KEY_NUM2

int public static final int KEY_NUM3

int public static final int KEY_NUM4

int public static final int KEY_NUM5

int public static final int KEY_NUM6

int public static final int KEY_NUM7

int public static final int KEY_NUM8

int public static final int KEY_NUM9

int public static final int KEY_POUND

int public static final int KEY_STAR

int public static final int LEFT

int public static final int RIGHT

int public static final int UP

Constructors
protected Canvas ()

Methods
int public int getGameAction (int keyCode)

int public int getHeight ()

int public int getKeyCode (int gameAction)

String public java.lang.String getKeyName (int keyCode)

int public int getWidth ()

boolean public boolean hasPointerEvents ()

boolean public boolean hasPointerMotionEvents ()

boolean public boolean hasRepeatEvents ()

void protected void hideNotify ()

boolean public boolean isDoubleBuffered ()

void protected void keyPressed (int keyCode)

void protected void keyReleased (int keyCode)

void protected void keyRepeated (int keyCode)

void protected abstract void paint (Graphics g)

void protected void pointerDragged (int x, int y)

void protected void pointerPressed (int x, int y)

void protected void pointerReleased (int x, int y)

void public final void repaint ()

void public final void repaint (int x, int y, int width,
int height)

void public final void serviceRepaints ()

void protected void showNotify ()

Inherited Member Summary

Methods inherited from class Displayable

Member Summary

Canvas javax.microedition.lcdui
DOWN

164 Mobile Information Device Profile (JSR-37) December 15, 2000

Fields

DOWN
public static final int DOWN

Constant for the DOWN game action.

Constant value 6 is set to DOWN.

FIRE
public static final int FIRE

Constant for the FIRE game action.

Constant value 8 is set to FIRE.

GAME_A
public static final int GAME_A

Constant for the general purpose "A" game action.

Constant value 9 is set to GAME_A.

GAME_B
public static final int GAME_B

Constant for the general purpose "B" game action.

Constant value 10 is set to GAME_B.

GAME_C
public static final int GAME_C

Constant for the general purpose "C" game action.

Constant value 11 is set to GAME_C.

public void addCommand (Command cmd), public boolean isShown (), public void remove-
Command (Command cmd), public void setCommandListener (CommandListener l)

Inherited Member Summary

 javax.microedition.lcdui Canvas
GAME_D

December 15, 2000 Mobile Information Device Profile (JSR-37) 165

GAME_D
public static final int GAME_D

Constant for the general purpose "D" game action.

Constant value 12 is set to GAME_D.

KEY_NUM0
public static final int KEY_NUM0

keyCode for ITU-T key 0.

Constant value 48 is set to KEY_NUM0.

KEY_NUM1
public static final int KEY_NUM1

keyCode for ITU-T key 1.

Constant value 49 is set to KEY_NUM1.

KEY_NUM2
public static final int KEY_NUM2

keyCode for ITU-T key 2.

Constant value 50 is set to KEY_NUM2.

KEY_NUM3
public static final int KEY_NUM3

keyCode for ITU-T key 3.

Constant value 51 is set to KEY_NUM3.

KEY_NUM4
public static final int KEY_NUM4

keyCode for ITU-T key 4.

Constant value 52 is set to KEY_NUM4.

KEY_NUM5
public static final int KEY_NUM5

keyCode for ITU-T key 5.

Constant value 53 is set to KEY_NUM5.

Canvas javax.microedition.lcdui
KEY_NUM6

166 Mobile Information Device Profile (JSR-37) December 15, 2000

KEY_NUM6
public static final int KEY_NUM6

keyCode for ITU-T key 6.

Constant value 54 is set to KEY_NUM6.

KEY_NUM7
public static final int KEY_NUM7

keyCode for ITU-T key 7.

Constant value 55 is set to KEY_NUM7.

KEY_NUM8
public static final int KEY_NUM8

keyCode for ITU-T key 8.

Constant value 56 is set to KEY_NUM8.

KEY_NUM9
public static final int KEY_NUM9

keyCode for ITU-T key 9.

Constant value 57 is set to KEY_NUM09.

KEY_POUND
public static final int KEY_POUND

keyCode for ITU-T key "pound" (#).

Constant value 35 is set to KEY_POUND.

KEY_STAR
public static final int KEY_STAR

keyCode for ITU-T key "star" (*).

Constant value 42 is set to KEY_STAR.

LEFT
public static final int LEFT

Constant for the LEFT game action.

Constant value 2 is set to LEFT.

 javax.microedition.lcdui Canvas
RIGHT

December 15, 2000 Mobile Information Device Profile (JSR-37) 167

RIGHT
public static final int RIGHT

Constant for the RIGHT game action.

Constant value 5 is set to RIGHT.

UP
public static final int UP

Constant for the UP game action.

Constant value 1 is set to UP.

Constructors

Canvas()
protected Canvas ()

Constructs a new Canvas object.

Methods

getGameAction(int)
public int getGameAction (int keyCode)

Gets the game action associated with the given key code of the device. Returns zero if no game action is
associated with this key code. See above for further discussion of game actions.

The mapping between key codes and game actions will not change during the execution of the application.

Parameters:
keyCode - the key code

Returns: the game action corresponding to this key, or 0 if none

Throws: IllegalArgumentException - if keyCode is not a valid key code

getHeight()
public int getHeight ()

Gets height of the displayable area in pixels. The value is unchanged during the execution of the application
and all Canvases will have the same value.

Returns: height of the displayable area

Canvas javax.microedition.lcdui
getKeyCode(int)

168 Mobile Information Device Profile (JSR-37) December 15, 2000

getKeyCode(int)
public int getKeyCode (int gameAction)

Gets a key code that corresponds to the specified game action on the device. The implementation is
required to provide a mapping for every game action, so this method will always return a valid key code for
every game action. See above for further discussion of game actions.

Note that a key code is associated with at most one game action, whereas a game action may be associated
with several key codes. Then, supposing that g is a valid game action and k is a valid key code for a key
associated with a game action, consider the following expressions:

g == getGameAction(getKeyCode(g)) // (1)
k == getKeyCode(getGameAction(k)) // (2)

Expression (1) is always true. However, expression (2) might be true but is not necessarily true.

The mapping between key codes and game actions will not change during the execution of the application.

Parameters:
gameAction - the game action

Returns: a key code corresponding to this game action

Throws: IllegalArgumentException - if gameAction is not a valid game action

getKeyName(int)
public java.lang.String getKeyName (int keyCode)

Gets an informative key string for a key. The string returned will resemble the text physically printed on the
key. This string is suitable for displaying to the user. For example, on a device with function keys F1
through F4, calling this method on the keyCode for the F1 key will return the string "F1". A typical use for
this string will be to compose help text such as "Press F1 to proceed."

This method will return a non-empty string for every valid key code.

There is no direct mapping from game actions to key names. To get the string name for a game action
GAME_A, the application must call

getKeyName(getKeyCode(GAME_A))

Parameters:
keyCode - the key code being requested

Returns: a string name for the key

Throws: IllegalArgumentException - if keyCode is not a valid key code

getWidth()
public int getWidth ()

Gets width of the displayable area in pixels. The value is unchanged during the execution of the application
and all Canvases will have the same value.

Returns: width of the displayable area

 javax.microedition.lcdui Canvas
hasPointerEvents()

December 15, 2000 Mobile Information Device Profile (JSR-37) 169

hasPointerEvents()
public boolean hasPointerEvents ()

Checks if the platform supports pointer press and release events.

Returns: true if the device supports pointer events

hasPointerMotionEvents()
public boolean hasPointerMotionEvents ()

Checks if the platform supports pointer motion events (pointer dragged). Applications may use this method
to determine if the platform is capable of supporting motion events.

Returns: true if the device supports pointer motion events

hasRepeatEvents()
public boolean hasRepeatEvents ()

Checks if the platform can generate repeat events when key is kept down.

Returns: true if the device supports repeat events

hideNotify()
protected void hideNotify ()

The implementation calls hideNotify() shortly after the Canvas has been removed from the display. Canvas
subclasses may override this method in order to pause animations, revoke timers, etc. The default imple-
mentation of this method in class Canvas is empty.

isDoubleBuffered()
public boolean isDoubleBuffered ()

Checks if the Graphics is double buffered by the implementation.

Returns: true if double buffered, false otherwise.

keyPressed(int)
protected void keyPressed (int keyCode)

Called when a key is pressed.

The getGameAction() method can be called to determine what game action, if any, is mapped to the key.
Class Canvas has an empty implementation of this method, and the subclass has to redefine it if it wants to
listen this method.

Parameters:
keyCode - The key code of the key that was pressed.

Canvas javax.microedition.lcdui
keyReleased(int)

170 Mobile Information Device Profile (JSR-37) December 15, 2000

keyReleased(int)
protected void keyReleased (int keyCode)

Called when a key is released. The getGameAction() method can be called to determine what game action,
if any, is mapped to the key. Class Canvas has an empty implementation of this method, and the subclass
has to redefine it if it wants to listen this method.

Parameters:
keyCode - The key code of the key that was released

keyRepeated(int)
protected void keyRepeated (int keyCode)

Called when a key is repeated (held down). The getGameAction() method can be called to determine what
game action, if any, is mapped to the key. Class Canvas has an empty implementation of this method, and
the subclass has to redefine it if it wants to listen this method.

Parameters:
keyCode - The key code of the key that was repeated

See Also: public boolean hasRepeatEvents ()

paint(Graphics)
protected abstract void paint (Graphics g)

Renders the Canvas. The application must implement this method in order to paint any graphics.

The Graphics object's clip region defines the area of the screen that is considered to be invalid. A correctly-
written paint() routine must paint every pixel within this region. Applications must not assume that they
know the underlying source of the paint() call and use this assumption to paint only a subset of the pixels
within the clip region. The reason is that this particular paint() call may have resulted from multiple
repaint() requests, some of which may have been generated from outside the application. An application
that paints only what it thinks is necessary to be painted may display incorrectly if the screen contents had
been invalidated by, for example, an incoming telephone call.

Operations on this graphics object after the paint() call returns are undefined. Thus, the application must not
cache this Graphics object for later use or use by another thread. It must only be used within the scope of
this method.

The implementation may postpone visible effects of graphics operations until the end of the paint method.

The contents of the Canvas are never saved if it is hidden and then is made visible again. Thus, shortly after
showNotify() is called, paint() will always be called with a Graphics object whose clip region specifies the
entire displayable area of the Canvas. Applications must not rely on any contents being preserved from a
previous occasion when the Canvas was current. This call to paint() will not necessarily occur before any
other key, pointer, or commandAction() methods are called on the Canvas. Applications whose repaint
recomputation is expensive may create an offscreen Image, paint into it, and then draw this image on the
Canvas when paint() is called.

The application code must never call paint(); it is called only by the implementation.

The Graphics object passed to the paint() method has the following properties:

• the destination is the actual display, or if double buffering is in effect, a back buffer for the display;

 javax.microedition.lcdui Canvas
pointerDragged(int, int)

December 15, 2000 Mobile Information Device Profile (JSR-37) 171

• the clip region includes at least one pixel within this Canvas;
• the current color is black;
• the font is the same as the font returned by public static Font getDefaultFont () ;
• the stroke style is public static final int SOLID ;
• the origin of the coordinate system is located at the upper-left corner of the Canvas; and
• the Canvas is visible, that is, a call to isShown() will return true.

Parameters:
g - the Graphics object to be used for rendering the Canvas

pointerDragged(int, int)
protected void pointerDragged (int x, int y)

Called when the pointer is dragged. The public boolean hasPointerMotionEvents ()
method may be called to determine if the device supports pointer events. Class Canvas has an empty imple-
mentation of this method, and the subclass has to redefine it if it wants to listen this method.

Parameters:
x - The horizontal location where the pointer was dragged (relative to the Canvas)

y - The vertical location where the pointer was dragged (relative to the Canvas)

pointerPressed(int, int)
protected void pointerPressed (int x, int y)

Called when the pointer is pressed. The public boolean hasPointerEvents () method may be
called to determine if the device supports pointer events. Class Canvas has an empty implementation of this
method, and the subclass has to redefine it if it wants to listen this method.

Parameters:
x - The horizontal location where the pointer was pressed (relative to the Canvas)

y - The vertical location where the pointer was pressed (relative to the Canvas)

pointerReleased(int, int)
protected void pointerReleased (int x, int y)

Called when the pointer is released. The public boolean hasPointerEvents () method may
be called to determine if the device supports pointer events. Class Canvas has an empty implementation of
this method, and the subclass has to redefine it if it wants to listen this method.

Parameters:
x - The horizontal location where the pointer was released (relative to the Canvas)

y - The vertical location where the pointer was released (relative to the Canvas)

Canvas javax.microedition.lcdui
repaint()

172 Mobile Information Device Profile (JSR-37) December 15, 2000

repaint()
public final void repaint ()

Requests a repaint for the entire Canvas. The effect is identical to

repaint(0, 0, getWidth(), getHeight());

repaint(int, int, int, int)
public final void repaint (int x, int y, int width, int height)

Requests a repaint for the specified region of the Screen. Calling this method may result in subsequent call
to paint(), where the passed Graphics object's clip region will include at least the specified region.

If the canvas is not visible, or if width and height are zero or less, or if the rectangle does not specify a visi-
ble region of the display, this call has no effect.

The call to paint() occurs independently of the call to repaint(). That is, repaint() will not block waiting for
paint() to finish. The paint() method will either be called after the caller of repaint() returns to the imple-
mentation (if the caller is a callback) or on another thread entirely.

To synchronize with its paint() routine, applications can use either public void callSerially
(javax.microedition.lcdui.Runnable r) or public final void serviceRe-
paints () , or they can code explicit synchronization into their paint() routine.

The origin of the coordinate system is above and to the left of the pixel in the upper left corner of the dis-
playable area of the Canvas. The X-coordinate is positive right and the Y-coordinate is positive down-
wards.

Parameters:
x - the x coordinate of the rectangle to be repainted

y - the y coordinate of the rectangle to be repainted

width - the width of the rectangle to be repainted

height - the height of the rectangle to be repainted

See Also: public void callSerially (javax.microedition.lcdui.Runnable r),
public final void serviceRepaints ()

serviceRepaints()
public final void serviceRepaints ()

Forces any pending repaint requests to be serviced immediately. This method blocks until the pending
requests have been serviced. If there are no pending repaints, or if this canvas is not visible on the display,
this call does nothing and returns immediately.

WARNING: This method blocks until the call to the application's paint() method returns. The application
has no control over which thread calls paint(); it may vary from implementation to implementation. If the
caller of serviceRepaints() holds a lock that the paint() method acquires, this may result in deadlock. There-
fore, callers of serviceRepaints() must not hold any locks that might be acquired within the paint() method.

 javax.microedition.lcdui Canvas
showNotify()

December 15, 2000 Mobile Information Device Profile (JSR-37) 173

The public void callSerially (javax.microedition.lcdui.Runnable r) method
provides a facility where an application can be called back after painting has completed, avoiding the dan-
ger of deadlock.

See Also: public void callSerially (javax.microedition.lcdui.Runnable r)

showNotify()
protected void showNotify ()

The implementation calls showNotify() immediately prior to this Canvas being made visible on the display.
Canvas subclasses may override this method to perform tasks before being shown, such as setting up ani-
mations, starting timers, etc. The default implementation of this method in class Canvas is empty.

174 Mobile Information Device Profile (JSR-37) December 15, 2000

javax.microedition.lcdui
Choice
Syntax
public interface Choice

All Known Implementing Classes: List, ChoiceGroup

Description

Choice defines an API for a user interface components implementing selection from predefined number of
choices. Such UI components are List and ChoiceGroup . The contents of the Choice are represented with
strings and optional images.

Each element of a Choice is composed of a text string and an optional image. The application may provide
null for the image if the element does not have an image part. If the application provides an image, the imple-
mentation may choose to ignore the image if it exceeds the capacity of the device to display it. If the implemen-
tation displays the image, it will be displayed adjacent to the text string and the pair will be treated as a unit.

Images within any particular Choice object should all be of the same size, because the implementation is
allowed to allocate the same amount of vertical space for every element.

If an element is too long to be displayed, the implementation will provide the user with means to see the whole
element. If this is done by wrapping an element to multiple lines, the second and subsequent lines show a clear
indication to the user that they are part of the same element and are not a new element.

After a Choice object has been created, elements may be inserted, appended, and deleted, and each element's
string part and image part may be get and set. Elements within a Choice object are referred to by their indexes,
which are consecutive integers in the range from zero to size()-1, with zero referring to the first element and
size()-1 to the last element.

There are three types of Choices: implicit-choice (valid only for List), exclusive-choice, and multiple-choice.

The exclusive-choice presents a series of elements and interacts with the user. That is, when the user selects an
element, that element is shown to be selected using a distinct visual representation. Exactly one element must be
selected at any given time. If at any time a situation would result where there are elements in the exclusive-
choice but none is selected, the implementation will choose an element and select it. This situation can arise
when an element is added to an empty Choice, when the selected element is deleted from the Choice, or when a
Choice is created and populated with elements by a constructor. In these cases, the choice of which element is
selected is left to the implementation. Applications for which the selected element is significant should set the
selection explicitly. There is no way for the user to unselect an element within an Exclusive Choice.

The implicit choice is an exclusive choice where the focused element is implicitly selected when a command is
initiated.

A multiple-choice presents a series of elements and allows the user to select any number of elements in any
combination. As with exclusive-choice, the multiple-choice interacts with the user in object-operation mode.
The visual appearance of a multiple-choice will likely have a visual representation distinct from the exclusive-
choice that shows the selected state of each element as well as indicating to the user that multiple elements may
be selected.

The selected state of an element is a property of the element. This state stays with that element if other elements
are inserted or deleted, causing elements to be shifted around. For example, suppose element n is selected, and a
new element is inserted at index zero. The selected element would now have index n+1. A similar rule applies
to deletion. Assuming n is greater than zero, deleting element zero would leave element n-1 selected. Setting the

 javax.microedition.lcdui Choice
EXCLUSIVE

December 15, 2000 Mobile Information Device Profile (JSR-37) 175

contents of an element leaves its selected state unchanged. When a new element is inserted or appended, it is
always unselected (except in the special case of adding an element to an empty Exclusive Choice as mentioned
above).

When a Choice is present on the display the user can interact with it indefinitely (for instance, traversing from
element to element and possibly scrolling). These traversing and scrolling operations do not cause application-
visible events. The system notifies the application either when some application-defined Command is fired, or
when selection state of ChoiceGroup is changed. When command is fired a high-level event is delivered to
the listener of the Screen. The event delivery is done with public void commandAction (Command
c, Displayable d) . In the case of ChoiceGroup the public void itemStateChanged
(Item item) is called when the user changes the selection state of the ChoiceGroup. At this time the appli-
cation can query the Choice for information about the currently selected element(s).

Fields

EXCLUSIVE
public static final int EXCLUSIVE

EXCLUSIVE is a choice having exactly one element selected at time.

Value 1 is assigned to EXCLUSIVE.

Member Summary
Fields

int public static final int EXCLUSIVE

int public static final int IMPLICIT

int public static final int MULTIPLE

Methods
int public int append (java.lang.String stringPart,

Image imagePart)

void public void delete (int elementNum)

Image public Image getImage (int elementNum)

int public int getSelectedFlags (boolean[] selectedArray_return)

int public int getSelectedIndex ()

String public java.lang.String getString (int elementNum)

void public void insert (int elementNum,
java.lang.String stringPart, Image imagePart)

boolean public boolean isSelected (int elementNum)

void public void set (int elementNum, java.lang.String stringPart,
Image imagePart)

void public void setSelectedFlags (boolean[] selectedArray)

void public void setSelectedIndex (int elementNum,
boolean selected)

int public int size ()

Choice javax.microedition.lcdui
IMPLICIT

176 Mobile Information Device Profile (JSR-37) December 15, 2000

IMPLICIT
public static final int IMPLICIT

IMPLICIT is a choice in which the currently focused item is selected when a Command is initiated. (Note:
IMPLICIT is not accepted by ChoiceGroup)

Value 3 is assigned to IMPLICIT.

MULTIPLE
public static final int MULTIPLE

MULTIPLE is a choice that can have arbitrary number of elements selected at a time.

Value 2 is assigned to MULTIPLE.

Methods

append(String, Image)
public int append (java.lang.String stringPart, Image imagePart)

Appends an element to the Choice. The added element will be the last element of the Choice. The size of
the Choice grows by one.

Parameters:
stringPart - the string part of the element to be added

imagePart - the image part of the element to be added, or null if there is no image part

Returns: the assigned index of the element

Throws: IllegalArgumentException - if the image is mutable

NullPointerException - if stringPart is null

delete(int)
public void delete (int elementNum)

Deletes the element referenced by elementNum. The size of the Choice shrinks by one. It is legal to delete
all elements from a Choice. The elementNum parameter must be within the range [0..size()-1], inclusive.

Parameters:
elementNum - the index of the element to be deleted

Throws: IndexOutOfBoundsException - if elementNum is invalid

getImage(int)
public Image getImage (int elementNum)

Gets the Image part of the element referenced by elementNum. The elementNum parameter must be within
the range [0..size()-1], inclusive.

 javax.microedition.lcdui Choice
getSelectedFlags(boolean[])

December 15, 2000 Mobile Information Device Profile (JSR-37) 177

Parameters:
elementNum - the index of the element to be queried

Returns: the image part of the element, or null if there is no image

Throws: IndexOutOfBoundsException - if elementNum is invalid

See Also: public java.lang.String getString (int elementNum)

getSelectedFlags(boolean[])
public int getSelectedFlags (boolean[] selectedArray_return)

Queries the state of a Choice and returns the state of all elements in the boolean array selectedArray_return.
NOTE: this is a result parameter. It must be at least as long as the size of the Choice as returned by size(). If
the array is longer, the extra elements are set to false.

This call is valid for all types of Choices. For MULTIPLE, any number of elements may be selected and set
to true in the result array. For EXCLUSIVE and IMPLICIT exactly one element will be selected (unless
there are zero elements in the Choice).

Parameters:
selectedArray_return - array to contain the results

Returns: the number of selected elements in the Choice

Throws: IllegalArgumentException - if selectedArray_return is shorter than the size of the
Choice.

NullPointerException - if selectedArray_return is null

getSelectedIndex()
public int getSelectedIndex ()

Returns the index number of an element in the Choice that is selected. For Choice types EXCLUSIVE and
IMPLICIT there is at most one element selected, so this method is useful for determining the user's choice.
Returns -1 if the Choice has no elements (and therefore has no selected elements).

For MULTIPLE, this always returns -1 because no single value can in general represent the state of such a
Choice. To get the complete state of a MULTIPLE Choice, see public int getSelectedFlags
(boolean[] selectedArray_return) .

Returns: index of selected element, or -1 if none

getString(int)
public java.lang.String getString (int elementNum)

Gets the String part of the element referenced by elementNum. The elementNum parameter must be within
the range [0..size()-1], inclusive.

Choice javax.microedition.lcdui
insert(int, String, Image)

178 Mobile Information Device Profile (JSR-37) December 15, 2000

Parameters:
elementNum - the index of the element to be queried

Returns: the string part of the element

Throws: IndexOutOfBoundsException - if elementNum is invalid

See Also: public Image getImage (int elementNum)

insert(int, String, Image)
public void insert (int elementNum, java.lang.String stringPart, Image imagePart)

Inserts an element into the Choice just prior to the element specified. The size of the Choice grows by one.
The elementNum parameter must be within the range [0..size()], inclusive. The index of the last element is
size()-1, and so there is actually no element whose index is size(). If this value is used for elementNum, the
new element is inserted immediately after the last element. In this case, the effect is identical to public
int append (java.lang.String stringPart, Image imagePart) .

Parameters:
elementNum - the index of the element where insertion is to occur

stringPart - the string part of the element to be inserted

imagePart - the image part of the element to be inserted, or null if there is no image part

Throws: IndexOutOfBoundsException - if elementNum is invalid

IllegalArgumentException - if the image is mutable

NullPointerException - if stringPart is null

isSelected(int)
public boolean isSelected (int elementNum)

Gets a boolean value indicating whether this element is selected. The elementNum parameter must be
within the range [0..size()-1], inclusive.

Parameters:
elementNum - the index of the element to be queried

Returns: selection state of the element

Throws: IndexOutOfBoundsException - if elementNum is invalid

set(int, String, Image)
public void set (int elementNum, java.lang.String stringPart, Image imagePart)

Sets the element referenced by elementNum to the specified element, replacing the previous contents of the
element. The elementNum parameter must be within the range [0..size()-1], inclusive.

Parameters:
elementNum - the index of the element to be set

stringPart - the string part of the new element

imagePart - the image part of the element, or null if there is no image part

Throws: IndexOutOfBoundsException - if elementNum is invalid

 javax.microedition.lcdui Choice
setSelectedFlags(boolean[])

December 15, 2000 Mobile Information Device Profile (JSR-37) 179

IllegalArgumentException - if the image is mutable

NullPointerException - if stringPart is null

setSelectedFlags(boolean[])
public void setSelectedFlags (boolean[] selectedArray)

Attempts to set the selected state of every element in the Choice. The array must be at least as long as the
size of the Choice. If the array is longer, the additional values are ignored.

For Choice objects of type MULTIPLE, this sets the selected state of every element in the Choice. An arbi-
trary number of elements may be selected.

For Choice objects of type EXCLUSIVE and IMPLICIT, exactly one array element must have the value
true. If no element is true, the first element in the Choice will be selected. If two or more elements are true,
the implementation will choose the first true element and select it.

Parameters:
selectedArray - an array in which the method collect the selection status

Throws: IllegalArgumentException - if selectedArray is shorter than the size of the Choice

NullPointerException - if selectedArray is null

setSelectedIndex(int, boolean)
public void setSelectedIndex (int elementNum, boolean selected)

For MULTIPLE, this simply sets an individual element's selected state.

For EXCLUSIVE, this can be used only to select any element, that is, the selected parameter must
be true . When an element is selected, the previously selected element is deselected. If selected is
false , this call is ignored. If element was already selected, the call has no effect.

For IMPLICIT, this can be used only to select any element, that is, the selected parameter must be
true . When an element is selected, the previously selected element is deselected. If selected is
false , this call is ignored. If element was already selected, the call has no effect.

The call to setSelectedIndex does not cause implicit activation of any Command.

For all list types, the elementNum parameter must be within the range [0..size()-1], inclusive.

Parameters:
elementNum - the index of the element, starting from zero

selected - the state of the element, where true means selected and false means not selected

Throws: IndexOutOfBoundsException - if elementNum is invalid

size()
public int size ()

Gets the number of elements present.

Returns: the number of elements in the Choice

180 Mobile Information Device Profile (JSR-37) December 15, 2000

javax.microedition.lcdui
ChoiceGroup
Syntax
public class ChoiceGroup extends Item implements Choice

Item
|
+--javax.microedition.lcdui.ChoiceGroup

All Implemented Interfaces: Choice

Description
A ChoiceGroup is a group of selectable elements intended to be placed within a Form . The group may be cre-
ated with a mode that requires a single choice to be made or that allows multiple choices. The implementation
is responsible for providing the graphical representation of these modes and must provide visually different
graphics for different modes. For example, it might use "radio buttons" for the single choice mode and "check
boxes" for the multiple choice mode.

Note: most of the essential methods have been specified in the Choice interface.

Member Summary
Constructors

public ChoiceGroup (java.lang.String label, int choiceType)

public ChoiceGroup (java.lang.String label, int choiceType,
java.lang.String[] stringElements, Image[] imageElements)

Methods
int public int append (java.lang.String stringPart,

Image imagePart)

void public void delete (int elementNum)

Image public Image getImage (int elementNum)

int public int getSelectedFlags (boolean[] selectedArray_return)

int public int getSelectedIndex ()

String public java.lang.String getString (int elementNum)

void public void insert (int elementNum,
java.lang.String stringElement, Image imageElement)

boolean public boolean isSelected (int elementNum)

void public void set (int elementNum, java.lang.String stringPart,
Image imagePart)

void public void setSelectedFlags (boolean[] selectedArray)

void public void setSelectedIndex (int elementNum,
boolean selected)

int public int size ()

Inherited Member Summary

Fields inherited from interface Choice

 javax.microedition.lcdui ChoiceGroup
ChoiceGroup(String, int)

December 15, 2000 Mobile Information Device Profile (JSR-37) 181

Constructors

ChoiceGroup(String, int)
public ChoiceGroup (java.lang.String label, int choiceType)

Creates a new, empty ChoiceGroup, specifying its title and its type. The type must be one of EXCLUSIVE
or MULTIPLE. The IMPLICIT choice type is not allowed within a ChoiceGroup.

Parameters:
label - the item's label (see Item)

choiceType - either EXCLUSIVE or MULTIPLE

Throws: IllegalArgumentException - if choice type is neither EXCLUSIVE nor MULTIPLE

See Also: public static final int EXCLUSIVE, public static final int
MULTIPLE, public static final int IMPLICIT

ChoiceGroup(String, int, String[], Image[])
public ChoiceGroup (java.lang.String label, int choiceType,

java.lang.String[] stringElements, Image[] imageElements)

Creates a new ChoiceGroup, specifying its title, the type of the ChoiceGroup, and an array of Strings and
Images to be used as its initial contents.

The type must be one of EXCLUSIVE or MULTIPLE. The IMPLICIT type is not allowed for Choice-
Group.

The stringElements array must be non-null and every array element must also be non-null. The length of the
stringElements array determines the number of elements in the ChoiceGroup. The imageElements array
may be null to indicate that the ChoiceGroup elements have no images. If the imageElements array is non-
null, it must be the same length as the stringElements array. Individual elements of the imageElements
array may be null in order to indicate the absence of an image for the corresponding ChoiceGroup element.
Any elements present in the imageElements array must refer to immutable images.

Parameters:
label - the item's label (see Item)

choiceType - EXCLUSIVE or MULTIPLE

stringElements - set of strings specifying the string parts of the ChoiceGroup elements

imageElements - set of images specifying the image parts of the ChoiceGroup elements

Throws: NullPointerException - if stringElements is null

public static final int EXCLUSIVE, public static final int IMPLICIT, public static
final int MULTIPLE

Methods inherited from class Item
public java.lang.String getLabel (), public void setLabel (java.lang.String label)

Inherited Member Summary

ChoiceGroup javax.microedition.lcdui
append(String, Image)

182 Mobile Information Device Profile (JSR-37) December 15, 2000

NullPointerException - if the stringElements array contains any null elements

IllegalArgumentException - if the imageElements array is non-null and has a different length
from the stringElements array

IllegalArgumentException - if choiceType is neither EXCLUSIVE nor MULTIPLE

IllegalArgumentException - if any image in the imageElements array is mutable

See Also: public static final int EXCLUSIVE, public static final int
MULTIPLE, public static final int IMPLICIT

Methods

append(String, Image)
public int append (java.lang.String stringPart, Image imagePart)

Specified By: public int append (java.lang.String stringPart,
Image imagePart) in interface Choice

Parameters:
stringPart - the string part of the element to be added

imagePart - the image part of the element to be added, or null if there is no image part

Returns: the assigned index of the element

Throws: IllegalArgumentException - if the image is mutable

NullPointerException - if stringPart is null

delete(int)
public void delete (int elementNum)

Specified By: public void delete (int elementNum) in interface Choice

Parameters:
elementNum - the index of the element to be deleted

Throws: IndexOutOfBoundsException - if elementNum is invalid

getImage(int)
public Image getImage (int elementNum)

Specified By: public Image getImage (int elementNum) in interface Choice

Parameters:
elementNum - the number of the element to be queried

Returns: the image part of the element, or null if there is no image

Throws: IndexOutOfBoundsException - if elementNum is invalid

See Also: public java.lang.String getString (int elementNum)

 javax.microedition.lcdui ChoiceGroup
getSelectedFlags(boolean[])

December 15, 2000 Mobile Information Device Profile (JSR-37) 183

getSelectedFlags(boolean[])
public int getSelectedFlags (boolean[] selectedArray_return)

Queries the state of a ChoiceGroup and returns the state of all elements in the boolean array
selectedArray_return. NOTE: this is a result parameter. It must be at least as long as the size of the Choice-
Group as returned by size(). If the array is longer, the extra elements are set to false.

For ChoiceGroup objects of type MULTIPLE, any number of elements may be selected and set to true in
the result array. For ChoiceGroup objects of type EXCLUSIVE, exactly one element will be selected,
unless there are zero elements in the ChoiceGroup.

Specified By: public int getSelectedFlags (boolean[] selectedArray_return)
in interface Choice

Parameters:
selectedArray_return - array to contain the results.

Returns: the number of selected elements in the ChoiceGroup

Throws: IllegalArgumentException - if selectedArray_return is shorter than the size of the
ChoiceGroup.

NullPointerException - if selectedArray_return is null.

getSelectedIndex()
public int getSelectedIndex ()

Returns the index number of an element in the ChoiceGroup that is selected. For ChoiceGroup objects of
type EXCLUSIVE there is at most one element selected, so this method is useful for determining the user's
choice. Returns -1 if there are no elements in the ChoiceGroup.

For ChoiceGroup objects of type MULTIPLE, this always returns -1 because no single value can in general
represent the state of such a ChoiceGroup. To get the complete state of a MULTIPLE Choice, see public
int getSelectedFlags (boolean[] selectedArray_return) .

Specified By: public int getSelectedIndex () in interface Choice

Returns: index of selected element, or -1 if none

getString(int)
public java.lang.String getString (int elementNum)

Specified By: public java.lang.String getString (int elementNum) in interface
Choice

Parameters:
elementNum - the index of the element to be queried

Returns: the string part of the element

Throws: IndexOutOfBoundsException - if elementNum is invalid

See Also: public Image getImage (int elementNum)

ChoiceGroup javax.microedition.lcdui
insert(int, String, Image)

184 Mobile Information Device Profile (JSR-37) December 15, 2000

insert(int, String, Image)
public void insert (int elementNum, java.lang.String stringElement, Image imageElement)

Specified By: public void insert (int elementNum,
java.lang.String stringPart, Image imagePart) in interface Choice

Parameters:
elementNum - the index of the element where insertion is to occur

stringPart - the string part of the element to be inserted

imagePart - the image part of the element to be inserted, or null if there is no image part

Throws: IndexOutOfBoundsException - if elementNum is invalid

IllegalArgumentException - if the image is mutable

NullPointerException - if stringPart is null

isSelected(int)
public boolean isSelected (int elementNum)

Specified By: public boolean isSelected (int elementNum) in interface Choice

Parameters:
elementNum - the index of the element to be queried

Returns: selection state of the element

Throws: IndexOutOfBoundsException - if elementNum is invalid

set(int, String, Image)
public void set (int elementNum, java.lang.String stringPart, Image imagePart)

Specified By: public void set (int elementNum, java.lang.String stringPart,
Image imagePart) in interface Choice

Parameters:
elementNum - the index of the element to be set

stringPart - the string part of the new element

imagePart - the image part of the element, or null if there is no image part

Throws: IndexOutOfBoundsException - if elementNum is invalid

IllegalArgumentException - if the image is mutable

NullPointerException - if stringPart is null

 javax.microedition.lcdui ChoiceGroup
setSelectedFlags(boolean[])

December 15, 2000 Mobile Information Device Profile (JSR-37) 185

setSelectedFlags(boolean[])
public void setSelectedFlags (boolean[] selectedArray)

Attempts to set the selected state of every element in the ChoiceGroup. The array must be at least as long as
the size of the ChoiceGroup. If the array is longer, the additional values are ignored.

For ChoiceGroup objects of type MULTIPLE, this sets the selected state of every element in the Choice.
An arbitrary number of elements may be selected.

For ChoiceGroup objects of type EXCLUSIVE, exactly one array element must have the value true. If no
element is true, the first element in the Choice will be selected. If two or more elements are true, the imple-
mentation will choose the first true element and select it.

Specified By: public void setSelectedFlags (boolean[] selectedArray) in
interface Choice

Parameters:
selectedArray - an array in which the method collect the selection status

Throws: IllegalArgumentException - if selectedArray is shorter than the size of the
ChoiceGroup.

NullPointerException - if the selectedArray is null.

setSelectedIndex(int, boolean)
public void setSelectedIndex (int elementNum, boolean selected)

For ChoiceGroup objects of type MULTIPLE, this simply sets an individual element's selected state.

For ChoiceGroup objects of type EXCLUSIVE, this can be used only to select an element. That is, the
selected parameter must be true . When an element is selected, the previously selected element is
deselected. If selected is false , this call is ignored.

For both list types, the elementNum parameter must be within the range [0..size()-1], inclusive.

Specified By: public void setSelectedIndex (int elementNum,
boolean selected) in interface Choice

Parameters:
elementNum - the number of the element. Indexing of the elements is zero-based.

selected - the new state of the element true=selected, false=not selected.

Throws: IndexOutOfBoundsException - if elementNum is invalid

size()
public int size ()

Specified By: public int size () in interface Choice

Returns: the number of elements in the ChoiceGroup

186 Mobile Information Device Profile (JSR-37) December 15, 2000

javax.microedition.lcdui
Command
Syntax
public class Command

javax.microedition.lcdui.Command

Description

The Command class is a construct that encapsulates the semantic information of an action. The behavior that the
command activates is not encapsulated in this object. This means that command contains only information
about "command" not the actual action that happens when command is activated. The action is defined in a
CommandListener associated with the Screen. Command objects are presented in the user interface and the
way they are presented may depend on the semantic information contained within the command.

Commands may be implemented in any user interface construct that has semantics for activating a single action.
This, for example, can be a soft button, item in a menu, or some other direct user interface construct. For exam-
ple, a speech interface may present these commands as voice tags.

The mapping to concrete user interface constructs may also depend on the total number of the commands. For
example, if an application asks for more abstract commands then can be mapped onto the available physical
buttons on a device, then the device may use an alternate human interface such as a menu. For example, the
abstract commands that cannot be mapped onto physical buttons are placed in a menu and the label "Menu" is
mapped onto one of the programmable buttons.

A command contains three pieces of information: a label, a type, and a priority. The label is used for the visual
representation of the command, whereas the type and the priority indicate the semantics of the command.

Label

Each command includes a label string. The label string is what the application requests to be shown to the user
to represent this command. For example, this string may appear next to a soft button on the device or as an ele-
ment in a menu. For command types other than SCREEN, this label may be overridden by a system-specific
label that is more appropriate for this command on this device. The contents of the label string are otherwise not
interpreted by the implementation.

Type

The application uses the command type to specify the intent of this command. For example, if the application
specifies that the command is of type BACK, and if the device has a standard of placing the "back" operation on
a certain soft-button, the implementation can follow the style of the device by using the semantic information as
a guide. The defined types are public static final int BACK , public static final int
CANCEL , public static final int EXIT , public static final int HELP , public
static final int ITEM , public static final int OK , public static final int
SCREEN , and public static final int STOP .

Priority

The application uses the priority value to describe the importance of this command relative to other commands
on the same screen. Priority values are integers, where a lower number indicates greater importance. The actual
values are chosen by the application. A priority value of one might indicate the most important command, prior-
ity values of two, three, four, and so on indicate commands of lesser importance.

Typically, the implementation first chooses the placement of a command based on the type of command and
then places similar commands based on a priority order. This could mean that the command with the highest
priority is placed so that user can trigger it directly and that commands with lower priority are placed on a menu.

 javax.microedition.lcdui Command
size()

December 15, 2000 Mobile Information Device Profile (JSR-37) 187

It is not an error for there to be commands on the same screen with the same priorities and types. If this occurs,
the implementation will choose the order in which they are presented.

For example, if the application has the following set of commands:
new Command("Buy", Command.SCREEN, 1);
new Command("Info", Command.SCREEN, 1);
new Command("Back", Command.BACK, 1);

An implementation with two soft buttons may map the BACK command to the right soft button and create an
"Options" menu on the left soft button to contain the other commands.

Command javax.microedition.lcdui
size()

188 Mobile Information Device Profile (JSR-37) December 15, 2000

The application is always responsible for providing the means for the user to progress through different screens.
An application may set up a screen that has no commands. This is allowed by the API but is generally not use-
ful; if this occurs the user would have no means to move to another screen. Such program would simply consid-
ered to be in error. A typical device should provide a means for the user to direct the application manager to kill
the erroneous application.

Member Summary
Fields

int public static final int BACK

int public static final int CANCEL

int public static final int EXIT

int public static final int HELP

int public static final int ITEM

int public static final int OK

int public static final int SCREEN

int public static final int STOP

Constructors
public Command (java.lang.String label, int commandType,
int priority)

Methods
int public int getCommandType ()

String public java.lang.String getLabel ()

int public int getPriority ()

 javax.microedition.lcdui Command
BACK

December 15, 2000 Mobile Information Device Profile (JSR-37) 189

Fields

BACK
public static final int BACK

A navigation command that returns the user to the logically previous screen. The jump to the previous
screen is not done automatically by the implementation but by the public void commandAction
(Command c, Displayable d) provided by the application. Note that the application defines the
actual action since the strictly previous screen may not be logically correct.

Value 2 is assigned to BACK.

See Also: public static final int CANCEL, public static final int STOP

CANCEL
public static final int CANCEL

A command that is a standard negative answer to a dialog implemented by current screen. Nothing is can-
celled automatically by the implementation; cancellation is implemented by the public void com-
mandAction (Command c, Displayable d) provided by the application.

With this command type, the application hints to the implementation that the user wants to dismiss the cur-
rent screen without taking any action on anything that has been entered into the current screen, and usually
that the user wants to return to the prior screen. In many cases CANCEL is interchangeable with BACK,
but BACK is mainly used for navigation as in a browser-oriented applications.

Value 3 is assigned to CANCEL.

See Also: public static final int BACK, public static final int STOP

EXIT
public static final int EXIT

A command used for exiting from the application. When the user invokes this command, the implementa-
tion does not exit automatically. The application's public void commandAction (Command c,
Displayable d) will be called, and it should exit the application if it is appropriate to do so.

Value 7 is assigned to EXIT.

HELP
public static final int HELP

This command specifies a request for on-line help. No help information is shown automatically by the
implementation. The public void commandAction (Command c, Displayable d) pro-
vided by the application is responsible for showing the help information.

Value 5 is assigned to HELP.

Command javax.microedition.lcdui
ITEM

190 Mobile Information Device Profile (JSR-37) December 15, 2000

ITEM
public static final int ITEM

With this command type the application can hint to the implementation that the command is specific to a
particular item on the screen. For example, an implementation of List can use this information for creating
context sensitive menus.

Value 8 is assigned to ITEM.

OK
public static final int OK

A command that is a standard positive answer to a dialog implemented by current screen. Nothing is done
automatically by the implementation; any action taken is implemented by the public void comman-
dAction (Command c, Displayable d) provided by the application.

With this command type the application hints to the implementation that the user will use this command to
ask the application to confirm the data that has been entered in the current screen and to proceed to the next
logical screen.

CANCEL is often used together with OK.

Value 4 is assigned to OK.

See Also: public static final int CANCEL

SCREEN
public static final int SCREEN

Specifies an application-defined command that pertains to the current screen. Examples could be "Load"
and "Save".

Value 1 is assigned to SCREEN.

STOP
public static final int STOP

A command that will stop some currently running process, operation, etc. Nothing is stopped automatically
by the implementation. The cessation must be performed by the public void commandAction
(Command c, Displayable d) provided by the application.

With this command type the application hints to the implementation that the user will use this command to
stop any currently running process visible to the user on the current screen. Examples of running processes
might include downloading or sending of data. Use of the STOP command does not necessarily imply a
switch to another screen.

Value 6 is assigned to STOP.

See Also: public static final int BACK, public static final int CANCEL

 javax.microedition.lcdui Command
Command(String, int, int)

December 15, 2000 Mobile Information Device Profile (JSR-37) 191

Constructors

Command(String, int, int)
public Command (java.lang.String label, int commandType, int priority)

Creates a new command object with the given label, type, and priority.

Parameters:
label - the label string

commandType - the command's type, one of public static final int BACK , public
static final int CANCEL , public static final int EXIT , public static
final int HELP , public static final int ITEM , public static final int
OK , public static final int SCREEN , or public static final int STOP

priority - the command's priority value

Throws: IllegalArgumentException - if the commandType is an invalid type

NullPointerException - if label is null

Methods

getCommandType()
public int getCommandType ()

Gets the type of the command.

Returns: type of the Command

getLabel()
public java.lang.String getLabel ()

Gets the label of the command.

Returns: label of the Command

getPriority()
public int getPriority ()

Gets the priority of the command.

Returns: priority of the Command

192 Mobile Information Device Profile (JSR-37) December 15, 2000

javax.microedition.lcdui
CommandListener
Syntax
public interface CommandListener

Description

This interface is used by applications which need to receive high-level events from the implementation. An
application will provide an implementation of a Listener (typically by using a nested class or an inner class) and
will then provide an instance of it on a Screen in order to receive high-level events on that screen.

The specification does not require the platform to create several threads for the event delivery. Thus, if a Lis-
tener method does not return or the return is not delayed, the system may be blocked. So, there is the following
note to application developers:

• the Listener method should return immediately.

See Also: public void setCommandListener (CommandListener l)

Methods

commandAction(Command, Displayable)
public void commandAction (Command c, Displayable d)

Indicates that a command event has occurred on Displayable d.

Note for application developer: the method should return immediately.

Parameters:
c - a Command object identifying the command. This is either one of the applications have been added
to Displayable with public void addCommand (Command cmd) or is the implicit public
static final Command SELECT_COMMAND of List.

d - the Displayable on which this event has occurred

Member Summary
Methods

void public void commandAction (Command c, Displayable d)

December 15, 2000 Mobile Information Device Profile (JSR-37) 193

javax.microedition.lcdui
DateField
Syntax
public class DateField extends Item

Item
|
+--javax.microedition.lcdui.DateField

Description
A DateField is an editable component for presenting date and time (calendar) information that may be placed
into a Form. Value for this field can be initially set or left unset. If value is not set then the UI for the field shows
this clearly. The field value for "not initialized state" is not valid value and getDate() for this state returns
null.

Instance of a DateField can be configured to accept date or time information or both of them. This input mode
configuration is done by DATE, TIME or DATE_TIME static fields of this class. DATE input mode allows to
set only date information and TIME only time information (hours, minutes). DATE_TIME allows to set both
clock time and date values.

In TIME input mode the date components of Date object must be set to the "zero epoch" value of January 1,
1970.

Calendar calculations in this field are based on default locale and defined time zone. Because of the calculations
and different input modes date object may not contain same millisecond value when set to this field and get
back from this field.

Member Summary
Fields

int public static final int DATE

int public static final int DATE_TIME

int public static final int TIME

Constructors
public DateField (java.lang.String label, int mode)

public DateField (java.lang.String label, int mode,
java.util.TimeZone timeZone)

Methods
Date public java.util.Date getDate ()

int public int getInputMode ()

void public void setDate (java.util.Date date)

void public void setInputMode (int mode)

Inherited Member Summary

Methods inherited from class Item
public java.lang.String getLabel (), public void setLabel (java.lang.String label)

DateField javax.microedition.lcdui
DATE

194 Mobile Information Device Profile (JSR-37) December 15, 2000

Fields

DATE
public static final int DATE

Input mode for date information (day, month, year). With this mode this DateField presents and allows only
to modify date value. The time information of date object is ignored.

Value 1 is assigned to DATE.

DATE_TIME
public static final int DATE_TIME

Input mode for date (day, month, year) and time (minutes, hours) information. With this mode this Date-
Field presents and allows to modify both time and date information.

Value 3 is assigned to DATE_TIME.

TIME
public static final int TIME

Input mode for time information (hours and minutes). With this mode this DateField presents and allows
only to modify time. The date components should be set to the "zero epoch" value of January 1, 1970 and
should not be accessed.

Value 2 is assigned to TIME.

Constructors

DateField(String, int)
public DateField (java.lang.String label, int mode)

Creates a DateField object with the specified label and mode. This call is identical to DateField(label,
mode, null).

Parameters:
label - item label

mode - the input mode, one of DATE, TIME or DATE_TIME

Throws: IllegalArgumentException - if the input mode's value is invalid

 javax.microedition.lcdui DateField
DateField(String, int, TimeZone)

December 15, 2000 Mobile Information Device Profile (JSR-37) 195

DateField(String, int, TimeZone)
public DateField (java.lang.String label, int mode, java.util.TimeZone timeZone)

Creates a date field in which calendar calculations are based on specific TimeZone object and the default
calendaring system for the current locale. The value of the DateField is initially in the "uninitialized" state.
If timeZone is null, the system's default time zone is used.

Parameters:
label - item label

mode - the input mode, one of DATE, TIME or DATE_TIME

timeZone - a specific time zone, or null for the default time zone

Throws: IllegalArgumentException - if the input mode's value is invalid

Methods

getDate()
public java.util.Date getDate ()

Returns date value of this field. Returned value is null if field value is not initialized. The date object is con-
structed according the rules of locale specific calendaring system and defined time zone. In TIME mode
field the date components are set to the "zero epoch" value of January 1, 1970. If a date object that presents
time beyond one day from this "zero epoch" then this field is in "not initialized" state and this method
returns null. In DATE mode field the time component of the calendar is set to zero when constructing the
date object.

Returns: date object representing time or date depending on input mode

getInputMode()
public int getInputMode ()

Gets input mode for this date field. Valid input modes are DATE, TIME and DATE_TIME.

Returns: input mode of this field

setDate(Date)
public void setDate (java.util.Date date)

Sets a new value for this field. Null can be passed to set the field state to "not initialized" state. The input
mode of this field defines what components of passed Date object is used.

In TIME input mode the date components must be set to the "zero epoch" value of January 1, 1970. If a date
object that presents time beyond one day then this field is in "not initialized" state. In TIME input mode the
date component of Date object is ignored and time component is used to precision of minutes.

In DATE input mode the time component of Date object is ignored.

In DATE_TIME input mode the date and time component of Date are used but only to precision of minutes.

DateField javax.microedition.lcdui
setInputMode(int)

196 Mobile Information Device Profile (JSR-37) December 15, 2000

Parameters:
date - new value for this field

setInputMode(int)
public void setInputMode (int mode)

Set input mode for this date field. Valid input modes are DATE, TIME and DATE_TIME.

Parameters:
mode - the input mode, must be one of DATE, TIME or DATE_TIME

Throws: IllegalArgumentException - if an invalid value is specified

December 15, 2000 Mobile Information Device Profile (JSR-37) 197

javax.microedition.lcdui
Display
Syntax
public class Display

javax.microedition.lcdui.Display

Description

Display represents the manager of the display and input devices of the system. It includes methods for retrieving
properties of the device and for requesting that objects be displayed on the device. Other methods that deal with
device attributes are primarily used with Canvas objects and are thus defined there instead of here.

There is exactly one instance of Display per MIDlet and the application can get a reference to that instance by
calling the public static Display getDisplay (javax.microedition.midlet m)
method. The application may call the getDisplay() method from the beginning of the startApp() call until the
destroyApp() call returns. The Display object returned by all calls to getDisplay() will remain the same during
this time.

A typical application will perform the following actions in response to calls to its MIDlet methods:

• startApp - the application is moving from the paused state to the active state. Initialization of objects
needed while the application is active should be done. The application may call public void set-
Current (Displayable nextDisplayable) for the first screen if that has not already been
done. Note that startApp() can be called several times if pauseApp() has been called in between. This
means that one-time initialization should not take place here but instead should occur within the MIDlet's
constructor.

• pauseApp - the application may pause its threads. Also, if it is desirable to start with another screen when
the application is re-activated, the new screen should be set with setCurrent().

• destroyApp - the application should free resources, terminate threads, etc. The behavior of method calls on
user interface objects after destroyApp() has returned is undefined.

The user interface objects that are shown on the display device are contained within a Displayable object.
At any time the application may have at most one Displayable object that it intends to be shown on the display
device and through which user interaction occurs. This Displayable is referred to as the current Displayable.

The Display class has a public void setCurrent (Displayable nextDisplayable) method
for setting the current Displayable and a public Displayable getCurrent () method for retrieving
the current Displayable. The application has control over its current Displayable and may call setCurrent() at
any time. Typically, the application will change the current Displayable in response to some user action. This is
not always the case, however. Another thread may change the current Displayable in response to some other
stimulus. The current Displayable will also be changed when the timer for an Alert elapses.

The application's current Displayable may not physically be drawn on the screen, nor will user events (such as
keystrokes) that occur necessarily be directed to the current Displayable. This may occur because of the pres-
ence of other MIDlet applications running simultaneously on the same device.

An application is said to be in the foreground if its current Displayable is actually visible on the display device
and if user input device events will be delivered to it. If the application is not in the foreground, it lacks access
to both the display and input devices, and it is said to be in the background. The policy for allocation of these
devices to different MIDlet applications is outside the scope of this specification and is under the control of an
external agent referred to as the application management software.

Display javax.microedition.lcdui
setInputMode(int)

198 Mobile Information Device Profile (JSR-37) December 15, 2000

As mentioned above, the application still has a notion of its current Displayable even if it is in the background.
The current Displayable is significant, even for background applications, because the current Displayable is
always the one that will be shown the next time the application is brought into the foreground. The application
can determine whether a Displayable is actually visible on the display by calling public boolean isS-
hown () . In the case of Canvas, the protected void showNotify () and protected void
hideNotify () methods are called when the Canvas is made visible and is hidden, respectively.

Each MIDlet application has its own current Displayable. This means that the public Displayable
getCurrent () method returns the MIDlet's current Displayable, regardless of the MIDlet's foreground/
background state. For example, suppose a MIDlet running in the foreground has current Displayable F, and a
MIDlet running in the background has current Displayable B. When the foreground MIDlet calls getCurrent(), it
will return F, and when the background MIDlet calls getCurrent(), it will return B. Furthermore, if either
MIDlet changes its current Displayable by calling setCurrent(), this will not affect the any other MIDlet's cur-
rent Displayable.

It is possible for getCurrent() to return null. This may occur at startup time, before the MIDlet application has
called setCurrent() on its first screen. The getCurrent() method will never return a reference to a Displayable
object that was not passed in a prior call to setCurrent() call by this MIDlet.

System Screens

Typically, the current screen of the foreground MIDlet will be visible on the display. However, under certain
circumstances, the system may create a screen that temporarily obscures the application's current screen. These
screens are referred to as system screens. This may occur if the system needs to show a menu of commands or if
the system requires the user to edit text on a separate screen instead of within a text field inside a Form. Even
though the system screen obscures the application's screen, the notion of the current screen does not change. In
particular, while a system screen is visible, a call to getCurrent() will return the application's current screen, not
the system screen. The value returned by isShown() is false while the current Displayable is obscured by a sys-
tem screen.

If system screen obscures a canvas, its hideNotify() method is called. When the system screen is removed,
restoring the canvas, its showNotify() method and then its paint() method are called. If the system screen was
used by the user to issue a command, the commandAction() method is called after showNotify() is called.

Member Summary
Methods

void public void callSerially (javax.microedition.lcdui.Runnable
r)

Displayable public Displayable getCurrent ()

Display public static Display getDisplay (javax.microedition.midlet
m)

boolean public boolean isColor ()

int public int numColors ()

void public void setCurrent (Alert alert,
Displayable nextDisplayable)

void public void setCurrent (Displayable nextDisplayable)

 javax.microedition.lcdui Display
callSerially(Runnable)

December 15, 2000 Mobile Information Device Profile (JSR-37) 199

Methods

callSerially(Runnable)
public void callSerially (javax.microedition.lcdui.Runnable r)

Causes the Runnable object r to have its run() method called later, serialized with the event stream, soon
after completion of the repaint cycle. As noted in section on event delivery in the Canvas class, the methods
that deliver event notifications to the current canvas are all called serially. The call to r.run() will be serial-
ized along with the event calls on the current canvas. The run() method will be called exactly once for each
call to callSerially(). Calls to run() will occur in the order in which they were requested by calls to callSeri-
ally().

If there is a repaint pending at the time of a call to callSerially(), the current Canvas's paint() method will be
called and will return, and a buffer switch will occur (if double buffering is in effect), before the Runnable's
run() method is called. Calls to the run() method will occur in a timely fashion, but they are not guaranteed
to occur immediately after the repaint cycle finishes, or even before the next event is delivered.

The callSerially() method may be called from any thread. The call to the run() method will occur indepen-
dently of the call to callSerially(). In particular, callSerially() will never block waiting for r.run() to return.

As with other callbacks, the call to r.run() must return quickly. If it is necessary to perform a long-running
operation, it may be initiated from within the run() method. The operation itself should be performed within
another thread, allowing run() to return.

The callSerially() facility may be used by applications to run an animation that is properly synchronized
with the repaint cycle. A typical application will set up a frame to be displayed and then call repaint(). The
application must then wait until the frame is actually displayed, after which the setup for the next frame
may occur. The call to run() notifies the application that the previous frame has finished painting. The
example below shows callSerially() being used for this purpose.

class Animation extends Canvas implements Runnable {
void paint(Graphics g) { ... } // paint the current frame
void startAnimation() {

// set up initial frame
repaint();
callSerially(this);

}
void run() { // called after previous repaint is finished

if (/* there are more frames */) {
// set up the next frame
repaint();
callSerially(this);

}
}

}

Parameters:
r - instance of interface Runnable to be called

Display javax.microedition.lcdui
getCurrent()

200 Mobile Information Device Profile (JSR-37) December 15, 2000

getCurrent()
public Displayable getCurrent ()

Gets the current Displayable object for this MIDlet. The Displayable object returned may not actually be
visible on the display if the MIDlet is running in the background, or if the Displayable is obscured by a sys-
tem screen. The public boolean isShown () method may be called to determine whether the Dis-
playable is actually visible on the display.

The value returned by getCurrent() may be null. This occurs after the application has been initialized but
before the first call to setCurrent().

Returns: the MIDlet's current Displayable object

getDisplay(MIDlet)
public static Display getDisplay (javax.microedition.midlet m)

Gets the Display object that is unique to this MIDlet.

Parameters:
m - Midlet of the application

Returns: the display object that application can use for its user interface

Throws: NullPointerException - if m is null

isColor()
public boolean isColor ()

Gets information about color support of the device.

Returns: true if the display supports color, false otherwise

numColors()
public int numColors ()

Gets the number of colors (if isColor() is true) or graylevels (if isColor() is false) that can be represented on
the device.

Note that number of Colors for black and white display is 2.

Returns: number of colors

setCurrent(Alert, Displayable)
public void setCurrent (Alert alert, Displayable nextDisplayable)

Requests that this Alert be made current, and that nextDisplayable be made current after the Alert is dis-
missed. This call returns immediately regardless of the Alert's timeout value or whether it is a modal alert.
The nextDisplayable must not be an Alert, and it must not be null.

In other respects, this method behaves identically to public void setCurrent (Displayable
nextDisplayable) .

 javax.microedition.lcdui Display
setCurrent(Displayable)

December 15, 2000 Mobile Information Device Profile (JSR-37) 201

Parameters:
alert - the alert to be shown

nextDisplayable - the Displayable to be shown after this alert is dismissed

Throws: NullPointerException - if alert or nextDisplayable is null

IllegalArgumentException - if nextDisplayable is an Alert

See Also: Alert

setCurrent(Displayable)
public void setCurrent (Displayable nextDisplayable)

Requests that a different Displayable object be made visible on the display. The change will typically not
take effect immediately. It may be delayed so that it occurs between event delivery method calls, although
it is not guaranteed to occur before the next event delivery method is called. The setCurrent() method
returns immediately, without waiting for the change to take place. Because of this delay, a call to getCur-
rent() shortly after a call to setCurrent() is unlikely to return the value passed to setCurrent().

Calls to setCurrent() are not queued. A delayed request made by a setCurrent() call may be superseded by a
subsequent call to setCurrent(). For example, if screen S1 is current, then

d.setCurrent(S2);
d.setCurrent(S3);

may eventually result in S3 being made current, bypassing S2 entirely.

When a MIDlet application is first started, there is no current Displayable object. It is the responsibility of
the application to ensure that a Displayable is visible and can interact with the user at all times. Therefore,
the application should always call setCurrent() as part of its initialization.

The application may pass null as the argument to setCurrent(). This does not have the effect of setting the
current Displayable to null; instead, the current Displayable remains unchanged. However, the applica-
tion management software may interpret this call as a hint from the application that it is requesting to be
placed into the background. Similarly, if the application is in the background, passing a non-null refer-
ence to setCurrent() may be interpreted by the application management software as a hint that the applica-
tion is requesting to be brought to the foreground. The request should be considered to be made even if the
current Displayable is passed to the setCurrent(). For example, the code

d.setCurrent(d.getCurrent());

generally will have no effect other than requesting that the application be brought to the foreground. These
requests are only hints, and there is no requirement that the application management software comply with
these requests in a timely fashion if at all.

If the Displayable passed to setCurrent() is an Alert , the previous Displayable is restored after the Alert
has been dismissed. The effect is as if setCurrent(Alert, getCurrent()) had been called. Note that this will
result in an exception being thrown if the current Displayable is already an alert. To specify the Displayable
to be shown after an Alert is dismissed, the application should use the public void setCurrent
(Alert alert, Displayable nextDisplayable) method. If the application calls setCurrent()
while an Alert is current, the Alert is removed from the display and any timer it may have set is cancelled.

If the application calls setCurrent() while a system screen is active, the effect may be delayed until after the
system screen is dismissed. The implementation may choose to interpret setCurrent() in such a situation as
a request to cancel the effect of the system screen, regardless of whether setCurrent() has been delayed.

Display javax.microedition.lcdui
setCurrent(Displayable)

202 Mobile Information Device Profile (JSR-37) December 15, 2000

Parameters:
nextDisplayable - the Displayable requested to be made current; null is allowed

December 15, 2000 Mobile Information Device Profile (JSR-37) 203

javax.microedition.lcdui
Displayable
Syntax
public abstract class Displayable

javax.microedition.lcdui.Displayable

Direct Known Subclasses: Canvas, Screen

Description

An object that has the capability of being placed on the display. A Displayable object may have commands and
listeners associated with it. The contents displayed and their interaction with the user are defined by subclasses.

Methods

addCommand(Command)
public void addCommand (Command cmd)

Adds a command to the Displayable. The implementation may choose, for example, to add the command to
any of the available softbuttons or place it in a menu. If the added command is already in the screen (tested
by comparing the object references), the method has no effect. If the Displayable is actually visible on the
display, and this call affects the set of visible commands, the implementation should update the display as
soon as it is feasible to do so.

Parameters:
cmd - the command to be added

Throws: NullPointerException - if cmd is null

isShown()
public boolean isShown ()

Checks if the Displayable is actually visible on the display. In order for a Displayable to be visible, all of
the following must be true: the Display's MIDlet must be running in the foreground, the Displayable must
be the Display's current screen, and the Displayable must not be obscured by a system screen.

Returns: true if the Displayable is currently visible

Member Summary
Methods

void public void addCommand (Command cmd)

boolean public boolean isShown ()

void public void removeCommand (Command cmd)

void public void setCommandListener (CommandListener l)

Displayable javax.microedition.lcdui
removeCommand(Command)

204 Mobile Information Device Profile (JSR-37) December 15, 2000

removeCommand(Command)
public void removeCommand (Command cmd)

Removes a command from the Displayable. If the command is not in the Displayable (tested by comparing
the object references), the method has no effect. If the Displayable is actually visible on the display, and
this call affects the set of visible commands, the implementation should update the display as soon as it is
feasible to do so.

Parameters:
cmd - the command to be removed

setCommandListener(CommandListener)
public void setCommandListener (CommandListener l)

Sets a listener for Command to this Displayable, replacing any previous CommandListener. A null refer-
ence is allowed and has the effect of removing any existing listener.

Parameters:
l - the new listener, or null.

December 15, 2000 Mobile Information Device Profile (JSR-37) 205

javax.microedition.lcdui
Font
Syntax
public final class Font

javax.microedition.lcdui.Font

Description

The Font class represents fonts and font metrics. Fonts cannot be created by applications. Instead, applications
query for fonts based on font attributes and the system will attempt to provide a font that matches the requested
attributes as closely as possible.

A Font's attributes are style, size, and face. Values for attributes must be specified in terms of symbolic con-
stants. Values for the style attribute may be combined using the logical OR operator, whereas values for the
other attributes may not be combined. For example, the value

STYLE_BOLD | STYLE_ITALIC

may be used to specify a bold-italic font; however

SIZE_LARGE | SIZE_SMALL

is illegal.

The values of these constants are arranged so that zero is valid for each attribute and can be used to specify a
reasonable default font for the system. For clarity of programming, the following symbolic constants are pro-
vided and are defined to have values of zero:

• STYLE_PLAIN
• SIZE_MEDIUM
• FACE_SYSTEM

Values for other attributes are arranged to have disjoint bit patterns in order to raise errors if they are inadvert-
ently misused (for example, using FACE_PROPORTIONAL where a style is required). However, the values
for the different attributes are not intended to be combined with each other.

Member Summary
Fields

int public static final int FACE_MONOSPACE

int public static final int FACE_PROPORTIONAL

int public static final int FACE_SYSTEM

int public static final int SIZE_LARGE

int public static final int SIZE_MEDIUM

int public static final int SIZE_SMALL

int public static final int STYLE_BOLD

int public static final int STYLE_ITALIC

int public static final int STYLE_PLAIN

int public static final int STYLE_UNDERLINED

Methods
int public int charsWidth (char[] ch, int offset, int length)

int public int charWidth (char ch)

int public int getBaselinePosition ()

Font javax.microedition.lcdui
FACE_MONOSPACE

206 Mobile Information Device Profile (JSR-37) December 15, 2000

Fields

FACE_MONOSPACE
public static final int FACE_MONOSPACE

The "monospace" font face.

Value 32 is assigned to FACE_MONOSPACE.

FACE_PROPORTIONAL
public static final int FACE_PROPORTIONAL

The "proportional" font face.

Value 64 is assigned to FACE_PROPORTIONAL.

FACE_SYSTEM
public static final int FACE_SYSTEM

The "system" font face.

Value 0 is assigned to FACE_SYSTEM.

SIZE_LARGE
public static final int SIZE_LARGE

The "large" system-dependent font size.

Value 16 is assigned to SIZE_LARGE.

Font public static Font getDefaultFont ()

int public int getFace ()

Font public static Font getFont (int face, int style, int size)

int public int getHeight ()

int public int getSize ()

int public int getStyle ()

boolean public boolean isBold ()

boolean public boolean isItalic ()

boolean public boolean isPlain ()

boolean public boolean isUnderlined ()

int public int stringWidth (java.lang.String str)

int public int substringWidth (java.lang.String str, int offset,
int len)

Member Summary

 javax.microedition.lcdui Font
SIZE_MEDIUM

December 15, 2000 Mobile Information Device Profile (JSR-37) 207

SIZE_MEDIUM
public static final int SIZE_MEDIUM

The "medium" system-dependent font size.

Value 0 is assigned to STYLE_MEDIUM.

SIZE_SMALL
public static final int SIZE_SMALL

The "small" system-dependent font size.

Value 8 is assigned to STYLE_SMALL.

STYLE_BOLD
public static final int STYLE_BOLD

The bold style constant. This may be combined with the other style constants for mixed styles.

Value 1 is assigned to STYLE_BOLD.

STYLE_ITALIC
public static final int STYLE_ITALIC

The italicized style constant. This may be combined with the other style constants for mixed styles.

Value 2 is assigned to STYLE_ITALIC.

STYLE_PLAIN
public static final int STYLE_PLAIN

The plain style constant. This may be combined with the other style constants for mixed styles.

Value 0 is assigned to STYLE_PLAIN.

STYLE_UNDERLINED
public static final int STYLE_UNDERLINED

The underlined style constant. This may be combined with the other style constants for mixed styles.

Value 4 is assigned to STYLE_UNDERLINED.

Font javax.microedition.lcdui
charsWidth(char[], int, int)

208 Mobile Information Device Profile (JSR-37) December 15, 2000

Methods

charsWidth(char[], int, int)
public int charsWidth (char[] ch, int offset, int length)

Returns the advance width of the characters in ch, starting at the specified offset and for the specified num-
ber of characters (length). The advance width is the amount by which the current point is moved from one
character to the next in a line of text.

The offset and length parameters must specify a valid range of characters within the character array ch. The
offset parameter must be within the range [0..(ch.length)]. The length parameter must be a non-negative
integer such that (offset + length) <= ch.length.

Parameters:
ch - The array of characters

offset - The index of the first character to measure

length - The number of characters to measure

Returns: the width of the character range

Throws: ArrayIndexOutOfBoundsException - if offset and length specify an invalid range

NullPointerException - if ch is null

charWidth(char)
public int charWidth (char ch)

Gets the advance width of the specified character in this Font. The advance width is the amount by which
the current point is moved from one character to the next in a line of text, and thus includes proper inter-
character spacing. This spacing occurs to the right of the character.

Parameters:
ch - the character to be measured

Returns: the total advance width (a non-negative value)

getBaselinePosition()
public int getBaselinePosition ()

Gets the distance in pixels from the top of the text to the text's baseline.

Returns: the distance in pixels from the top of the text to the text's baseline

getDefaultFont()
public static Font getDefaultFont ()

Gets the default font of the system.

 javax.microedition.lcdui Font
getFace()

December 15, 2000 Mobile Information Device Profile (JSR-37) 209

getFace()
public int getFace ()

Gets the face of the font.

Returns: one of FACE_SYSTEM, FACE_PROPORTIONAL, FACE_MONOSPACE

getFont(int, int, int)
public static Font getFont (int face, int style, int size)

Obtains an object representing a font having the specified face, style, and size. If a matching font does not
exist, the system will attempt to provide the closest match. This method always returns a valid font object,
even if it is not a close match to the request.

Parameters:
face - one of FACE_SYSTEM, FACE_MONOSPACE, or FACE_PROPORTIONAL

style - STYLE_PLAIN, or a combination of STYLE_BOLD, STYLE_ITALIC, and
STYLE_UNDERLINED

size - one of SIZE_SMALL, SIZE_MEDIUM, or SIZE_LARGE

Returns: instance the nearest font found

Throws: IllegalArgumentException - if face, style, or size are not legal values

getHeight()
public int getHeight ()

Gets the standard height of a line of text in this font. This value includes sufficient spacing to ensure that
lines of text painted this distance from anchor point to anchor point are spaced as intended by the font
designer and the device. This extra space (leading) occurs below the text.

Returns: standard height of a line of text in this font (a non-negative value)

getSize()
public int getSize ()

Gets the size of the font.

Returns: one of SIZE_SMALL, SIZE_MEDIUM, SIZE_LARGE

getStyle()
public int getStyle ()

Gets the style of the font. The value is an OR'ed combination of STYLE_BOLD, STYLE_ITALIC, and
STYLE_UNDERLINED; or the value is zero (STYLE_PLAIN).

Returns: style of the current font

See Also: public boolean isPlain (), public boolean isBold (), public
boolean isItalic ()

Font javax.microedition.lcdui
isBold()

210 Mobile Information Device Profile (JSR-37) December 15, 2000

isBold()
public boolean isBold ()

Returns true if the font is bold.

Returns: true if font is bold

See Also: public int getStyle ()

isItalic()
public boolean isItalic ()

Returns true if the font is italic.

Returns: true if font is italic

See Also: public int getStyle ()

isPlain()
public boolean isPlain ()

Returns true if the font is plain.

Returns: true if font is plain

See Also: public int getStyle ()

isUnderlined()
public boolean isUnderlined ()

Returns true if the font is underlined.

Returns: true if font is underlined

See Also: public int getStyle ()

stringWidth(String)
public int stringWidth (java.lang.String str)

Gets the total advance width for showing the specified String in this Font. The advance width is the amount
by which the current point is moved from one character to the next in a line of text.

Parameters:
str - the String to be measured.

Returns: the total advance width

Throws: NullPointerException - if str is null

 javax.microedition.lcdui Font
substringWidth(String, int, int)

December 15, 2000 Mobile Information Device Profile (JSR-37) 211

substringWidth(String, int, int)
public int substringWidth (java.lang.String str, int offset, int len)

Gets the total advance width for showing the specified substring in this Font. The advance width is the
amount by which the current point is moved from one character to the next in a line of text.

The offset and length parameters must specify a valid range of characters within str. The offset parameter
must be within the range [0..(str.length())]. The length parameter must be a non-negative integer such that
(offset + length) <= str.length().

Parameters:
str - the String to be measured.

offset - zero-based index of first character in the substring

len - length of the substring.

Returns: the total advance width

Throws: StringIndexOutOfBoundsException - if offset and length specify an invalid range

NullPointerException - if str is null

212 Mobile Information Device Profile (JSR-37) December 15, 2000

javax.microedition.lcdui
Form
Syntax
public class Form extends Screen

Displayable
|
+--Screen

|
+--javax.microedition.lcdui.Form

Description

A Form is a Screen that contains an arbitrary mixture of items: images, read-only text fields, editable text fields,
editable date fields, gauges, and choice groups. In general, any subclass of the Item class may be contained
within a form. The implementation handles layout, traversal, and scrolling. None of the components contained
within has any internal scrolling; the entire contents scrolls together. Note that this differs from the behavior of
other classes, the List for example, where only the interior scrolls.

The items contained within a Form may be edited using append, delete, insert, and set methods. Items within a
Form are referred to by their indexes, which are consecutive integers in the range from zero to size()-1, with
zero referring to the first item and size()-1 to the last item.

An item may be placed within at most one Form. If the application attempts to place an item into a Form, and
the item is already owned by this or another Form, an IllegalStateException is thrown. The application must
remove the item from its currently containing Form before inserting it into the new Form.

As with other screens, the layout policy in most devices is vertical. In forms this applies to items involving user
input. So, a new line is always started for focusable items like TextField, DateField, Gauge or ChoiceGroup.

Strings and images, which do not involve user interactions, behave differently; they are filled in horizontal
lines, unless newline is embedded in the string or layout directives of the ImageItem force a new line. Con-
tents will be wrapped (for text) or clipped (for images) to fit the width of the display, and scrolling will occur
vertically as necessary. There will be no horizontal scrolling.

If the Form is visible on the display when changes to its contents are requested by the application, the changes
take place immediately. That is, applications need not take any special action to refresh a Form's display after its
contents have been modified.

When a Form is present on the display the user can interact with it and its Items indefinitely (for instance, tra-
versing from Item to Item and possibly scrolling). These traversing and scrolling operations do not cause appli-
cation-visible events. The system notifies the application when the user modifies the state of an interactive Item
contained within the Form. This notification is accomplished by calling the public void itemState-
Changed (Item item) method of the listener declared to the Form with the public void set-
ItemStateListener (ItemStateListener iListener) method.

As with other Displayable objects, a Form can declare Command and declare a command listener with the
public void setCommandListener (CommandListener l) method. CommandListener
objects are distinct from ItemStateListener objects, and they are declared and invoked separately.

 javax.microedition.lcdui Form
Form(String)

December 15, 2000 Mobile Information Device Profile (JSR-37) 213

Notes for application developers:

• Although this class allows creation of arbitrary combination of components the application developers
should keep the small screen size in mind. Form is designed to contain a small number of closely related UI
elements.

• If the number of items does not fit on the screen, the implementation may choose to make it scrollable or to
fold some components so that a new screen is popping up when the element is edited.

See Also: Item

Constructors

Form(String)
public Form (java.lang.String title)

Creates a new, empty Form.

Member Summary
Constructors

public Form (java.lang.String title)

public Form (java.lang.String title, Item[] items)

Methods
int public int append (Image img)

int public int append (Item item)

int public int append (java.lang.String str)

void public void delete (int itemNum)

Item public Item get (int itemNum)

void public void insert (int itemNum, Item item)

void public void set (int itemNum, Item item)

void public void setItemStateListener (ItemStateListener iLis-
tener)

int public int size ()

Inherited Member Summary

Methods inherited from class Screen
public Ticker getTicker (), public java.lang.String getTitle (), public void set-
Ticker (Ticker ticker), public void setTitle (java.lang.String s)

Methods inherited from class Displayable
public void addCommand (Command cmd), public boolean isShown (), public void remove-
Command (Command cmd), public void setCommandListener (CommandListener l)

Form javax.microedition.lcdui
Form(String, Item[])

214 Mobile Information Device Profile (JSR-37) December 15, 2000

Parameters:
title - the Form's title, or null for no title

Form(String, Item[])
public Form (java.lang.String title, Item[] items)

Creates a new Form with the specified contents. This is identical to creating an empty Form and then using
a set of append methods. The items array may be null, in which case the Form is created empty. If the
items array is non-null, each element must be a valid Item not already contained within another Form.

Parameters:
title - the Form's title string

items - the array of items to be placed in the Form, or null if there are no items

Throws: IllegalStateException - if one of the items is already owned by another container

NullPointerException - if an element of the items array is null

Methods

append(Image)
public int append (Image img)

Adds an item consisting of one Image to the form. The effect visible to the application is identical to

append(new ImageItem(null, img, ImageItem.LAYOUT_DEFAULT, null))

Parameters:
img - the image to be added

Returns: the assigned index of the Item

Throws: IllegalArgumentException - if the image is mutable

NullPointerException - if img is null

append(Item)
public int append (Item item)

Adds an Item into the Form. Strings are filled so that current line is continued if possible. If the text width is
greater that the remaining horizontal space on the current line, the implementation inserts a new line and
appends the rest of the text. Whenever possible the implementation should avoid breaking words into two
lines. Instead, occurrences of white space (space or tab) should be used as potential places for splitting the
lines. Also, a newline character in the string causes starting of a new line.

Images are laid out in the same manner as strings, unless the layout directives of ImageItem specify oth-
erwise. Focusable items (TextField, ChoiceGroup, DateField, and Gauge) are placed on their own horizon-
tal lines.

 javax.microedition.lcdui Form
append(String)

December 15, 2000 Mobile Information Device Profile (JSR-37) 215

Parameters:
item - the Item to be added.

Returns: the assigned index of the Item

Throws: IllegalStateException - if the item is already owned by a container

NullPointerException - if item is null

append(String)
public int append (java.lang.String str)

Adds an item consisting of one String to the form. The effect visible to the application is identical to

append(new StringItem(null, str))

Parameters:
str - the String to be added

Returns: the assigned index of the Item

Throws: NullPointerException - if str is null

delete(int)
public void delete (int itemNum)

Deletes the Item referenced by itemNum. The size of the Form shrinks by one. It is legal to delete all items
from a Form. The itemNum parameter must be within the range [0..size()-1], inclusive.

Parameters:
itemNum - the index of the item to be deleted

Throws: IndexOutOfBoundsException - if itemNum is invalid

get(int)
public Item get (int itemNum)

Gets the item at given position. The contents of the Form are left unchanged. The itemNum parameter must
be within the range [0..size()-1], inclusive.

Parameters:
itemNum - the index of item

Returns: the item at the given position

Throws: IndexOutOfBoundsException - if itemNum is invalid

Form javax.microedition.lcdui
insert(int, Item)

216 Mobile Information Device Profile (JSR-37) December 15, 2000

insert(int, Item)
public void insert (int itemNum, Item item)

Inserts an item into the Form just prior to the item specified. The size of the Form grows by one. The item-
Num parameter must be within the range [0..size()], inclusive. The index of the last item is size()-1, and so
there is actually no item whose index is size(). If this value is used for itemNum, the new item is inserted
immediately after the last item. In this case, the effect is identical to public int append (Item
item) .

The semantics are otherwise identical to public int append (Item item) .

Parameters:
itemNum - the index where insertion is to occur

item - the item to be inserted

Throws: IndexOutOfBoundsException - if itemNum is invalid

IllegalStateException - if the item is already owned by a container

NullPointerException - if item is null

set(int, Item)
public void set (int itemNum, Item item)

Sets the item referenced by itemNum to the specified item, replacing the previous item. The previous item
is removed from this Form. The itemNum parameter must be within the range [0..size()-1], inclusive.

The end result is equal to

insert(n, item); delete(n+1);

Parameters:
itemNum - the index of the item to be replaced

item - the new item to be placed in the Form

Throws: IndexOutOfBoundsException - if itemNum is invalid

IllegalStateException - if the item is already owned by a container

NullPointerException - if item is null

setItemStateListener(ItemStateListener)
public void setItemStateListener (ItemStateListener iListener)

Sets the ItemStateListener for the Form, replacing any previous ItemStateListener. If iListener is null, sim-
ply removes the previous ItemStateListener.

Parameters:
iListener - the new listener, or null to remove it

 javax.microedition.lcdui Form
size()

December 15, 2000 Mobile Information Device Profile (JSR-37) 217

size()
public int size ()

Gets the number of items in the Form.

Returns: the number of items

218 Mobile Information Device Profile (JSR-37) December 15, 2000

javax.microedition.lcdui
Gauge
Syntax
public class Gauge extends Item

Item
|
+--javax.microedition.lcdui.Gauge

Description
The Gauge class implements a bar graph display of a value intended for use in a form. Gauge is optionally inter-
active. The values accepted by the object are small integers in the range zero through a maximum value estab-
lished by the application. The application is expected to normalize its values into this range. The device is
expected to normalize this range into a smaller set of values for display purposes. Doing so will not change the
actual value contained within the object. The range of values specified by the application may be larger than the
number of distinct visual states possible on the device, so more than one value may have the same visual repre-
sentation.

For example, consider a Gauge object that has a range of values from zero to 99, running on a device that dis-
plays the Gauge's approximate value using a set of one to ten bars. The device might show one bar for values
zero through nine, two bars for values ten through 19, three bars for values 20 through 29, and so forth.

A Gauge may be interactive or non-interactive. Applications may set or retrieve the Gauge's value at any time
regardless of the interaction mode. The implementation may change the visual appearance of the bar graph
depending on whether the object is created in interactive mode.

In interactive mode, the user is allowed to modify the value. The user will always have the means to change the
value up or down by one and may also have the means to change the value in greater increments. The user is
prohibited from moving the value outside the established range. The expected behavior is that the application
sets the initial value and then allows the user to modify the value thereafter. However, the application is not pro-
hibited from modifying the value even while the user is interacting with it.

In many cases the only means for the user to modify the value will be to press a button to increase or decrease
the value by one unit at a time. Therefore, applications should specify a range of no more than a few dozen val-
ues.

In non-interactive mode, the user is prohibited from modifying the value. An expected use of the non-interac-
tive mode is as a "progress indicator" to give the user some feedback as progress occurs during a long-running
operation. The application is expected to update the value periodically using the setValue() method. An applica-
tion using the Gauge as a progress indicator should typically also attach a public static final int
STOP command to the Form containing the Gauge to allow the user to halt the operation in progress.

Member Summary
Constructors

public Gauge (java.lang.String label, boolean interactive,
int maxValue, int initialValue)

Methods
int public int getMaxValue ()

int public int getValue ()

boolean public boolean isInteractive ()

void public void setMaxValue (int maxValue)

 javax.microedition.lcdui Gauge
Gauge(String, boolean, int, int)

December 15, 2000 Mobile Information Device Profile (JSR-37) 219

Constructors

Gauge(String, boolean, int, int)
public Gauge (java.lang.String label, boolean interactive, int maxValue,

int initialValue)

Creates a new Gauge object with the given label, in interactive or non-interactive mode, with the given
maximum and initial values. The maximum value must be greater than zero, otherwise an exception is
thrown. The initial value must be within the range zero to maxValue, inclusive. If the initial value is less
than zero, the value is set to zero. If the initial value is greater than maxValue, it is set to maxValue.

Parameters:
label - the Gauge's label

interactive - tells whether the user can change the value

maxValue - the maximum value

initialValue - the initial value in the range [0..maxValue]

Throws: IllegalArgumentException - if maxValue is invalid

Methods

getMaxValue()
public int getMaxValue ()

Gets the maximum value of this Gauge object.

Returns: the maximum value of the Gauge

void public void setValue (int value)

Inherited Member Summary

Methods inherited from class Item
public java.lang.String getLabel (), public void setLabel (java.lang.String label)

Member Summary

Gauge javax.microedition.lcdui
getValue()

220 Mobile Information Device Profile (JSR-37) December 15, 2000

getValue()
public int getValue ()

Gets the current value of this Gauge object.

Returns: current value of the Gauge

isInteractive()
public boolean isInteractive ()

Tells whether the user is allowed to change the value of the Gauge.

Returns: a boolean indicating whether the Gauge is interactive

setMaxValue(int)
public void setMaxValue (int maxValue)

Sets the maximum value of this Gauge object. The new maximum value must be greater than zero, other-
wise an exception is thrown. If the current value is greater than new maximum value, the current value is
set to be equal to the new maximum value.

Parameters:
maxValue - the new maximum value

Throws: IllegalArgumentException - if maxValue is invalid

setValue(int)
public void setValue (int value)

Sets the current value of this Gauge object. If the value is less than zero, zero is used. If the current value is
greater than the maximum value, the current value is set to be equal to the maximum value.

Parameters:
value - the new value

December 15, 2000 Mobile Information Device Profile (JSR-37) 221

javax.microedition.lcdui
Graphics
Syntax
public class Graphics

javax.microedition.lcdui.Graphics

Description

Provides simple 2D geometric rendering capability. Drawing primitives are provided for text, images, lines,
rectangles, and arcs. Rectangles and arcs may also be filled with a solid color. Rectangles may also be specified
with rounded corners.

The only drawing operation provided is pixel replacement. The destination pixel value is simply replaced by the
current pixel value specified in the graphics object being used for rendering. No facility for combining pixel
values, such as raster-ops or alpha blending, is provided.

A 24-bit color model is provided, with 8 bits for each of red, green, and blue components of a color. Not all
devices support a full 24 bits' worth of color and thus they will map colors requested by the application into col-
ors available on the device. Facilities are provided in the Display class for obtaining device characteristics,
such as whether color is available and how many distinct gray levels are available. This enables applications to
adapt their behavior to a device without compromising device independence.

Graphics may be rendered directly to the display or to an off-screen image buffer. The destination of rendered
graphics depends on the provenance of the graphics object. A graphics object for rendering to the display is
passed to the Canvas object's protected abstract void paint (Graphics g) method. This is
the only means by which a graphics object may be obtained whose destination is the display. Furthermore,
applications may draw using this graphics object only for the duration of the paint() method.

A graphics object for rendering to an off-screen image buffer may be obtained by calling the public
Graphics getGraphics () method on the desired image. A graphics object so obtained may be held
indefinitely by the application, and requests may be issued on this graphics object at any time.

The default coordinate system's origin is at the upper left-hand corner of the destination. The X-axis direction is
positive towards the right, and the Y-axis direction is positive downwards. Applications may assume that hori-
zontal and vertical distances in the coordinate system represent equal distances on the actual device display, that
is, pixels are square. A facility is provided for translating the origin of the coordinate system. All coordinates
are specified as integers.

The coordinate system represents locations between pixels, not the pixels themselves. Therefore, the first pixel
in the upper left corner of the display lies in the square bounded by coordinates (0,0) , (1,0) , (0,1) , (1,1).

Under this definition, the semantics for fill operations are clear. Since coordinate grid lines lie between pixels,
fill operations affect pixels that lie entirely within the region bounded by the coordinates of the operation. For
example, the operation

g.fillRect(0, 0, 3, 2)

paints exactly six pixels. (In this example, and in all subsequent examples, the variable g is assumed to contain
a reference to a Graphics object.)

Each character of a font contains a set of pixels that forms the shape of the character. When a character is
painted, the pixels forming the character's shape are filled with the Graphics object's current color, and the pix-
els not part of the character's shape are left untouched. The text drawing calls public void drawChar
(char character, int x, int y, int anchor) , public void drawChars (char[]

Graphics javax.microedition.lcdui
setValue(int)

222 Mobile Information Device Profile (JSR-37) December 15, 2000

data, int offset, int length, int x, int y, int anchor) , public void draw-
String (java.lang.String str, int x, int y, int anchor) , and public void
drawSubstring (java.lang.String str, int offset, int len, int x, int y,
int anchor) all draw text in this manner.

Lines, arcs, rectangles, and rounded rectangles may be drawn with either a SOLID or a DOTTED stroke style,
as set by the public void setStrokeStyle (int style) method. The stroke style does not affect
fill, text, and image operations.

For the SOLID stroke style, drawing operations are performed with a one-pixel wide pen that fills the pixel
immediately below and to the right of the specified coordinate. Drawn lines touch pixels at both endpoints.
Thus, the operation

g.drawLine(0, 0, 0, 0)

paints exactly one pixel, the first pixel in the upper left corner of the display.

Drawing operations under the DOTTED stroke style will touch a subset of pixels that would have been touched
under the SOLID stroke style. The frequency and length of dots is implementation-dependent. The endpoints of
lines and arcs are not guaranteed to be drawn, nor are the corner points of rectangles guaranteed to be drawn.
Dots are drawn by painting with the current color; spaces between dots are left untouched.

An artifact of the coordinate system is that the area affected by a fill operation differs slightly from the area
affected by a draw operation given the same coordinates. For example, consider the operations

g.fillRect(x, y, w, h); // 1
g.drawRect(x, y, w, h); // 2

Statement (1) fills a rectangle w pixels wide and h pixels high. Statement (2) draws a rectangle whose left and
top edges are within the area filled by statement (1). However, the bottom and right edges lie one pixel outside
the filled area. This is counterintuitive, but it preserves the invariant that

g.drawLine(x, y, x+w, y);
g.drawLine(x+w, y, x+w, y+h);
g.drawLine(x+w, y+h, x, y+h);
g.drawLine(x, y+h, x, y);

has an effect identical to statement (2) above.

The exact pixels painted by drawLine() and drawArc() are not specified. Pixels touched by a fill operation must
either exactly overlap or directly abut pixels touched by the corresponding draw operation. A fill operation must
never leave a gap between the filled area and the pixels touched by the corresponding draw operation, nor may
the fill operation touch pixels outside the area bounded by the corresponding draw operation.

There is a single clipping rectangle. Operations are provided for intersecting the current clip rectangle with a
given rectangle and for setting the current clip rectangle outright. The only pixels touched by graphics opera-
tions are those that lie entirely within the clip rectangle. Pixels outside the clip rectangle are not affected by any
graphics operations. It is legal to specify a clipping rectangle whose width or height is zero or negative. In this
case the clipping rectangle is considered to be empty, that is, no pixels are contained within it. Therefore, if any
graphics operations are issued under such a clipping rectangle, no pixels will be modified.

If a graphics operation is affected by the clip rectangle, the pixels touched by that operation must be the same
ones that would be touched as if the clip rectangle did not affect the operation. For example, consider a clip rect-
angle (cx, cy, cw, ch) and a point (x1, y1) that lies outside this rectangle and a point (x2, y2) that lies within this
rectangle. In the following code fragment,

 javax.microedition.lcdui Graphics
setValue(int)

December 15, 2000 Mobile Information Device Profile (JSR-37) 223

g.setClip(0, 0, canvas.getWidth(), canvas.getHeight());
g.drawLine(x1, y1, x2, y2); // 3
g.setClip(cx, cy, cw, ch);
g.drawLine(x1, y1, x2, y2); // 4

The pixels touched by statement (4) must be identical to the pixels within (cx, cy, cw, ch) touched by statement
(3).

Anchor Points

The drawing of text is based on "anchor points". Anchor points are used to minimize the amount of computation
required when placing text. For example, in order to center a piece of text, an application needs to call string-
Width() or charWidth() to get the width and then perform a combination of subtraction and division to compute
the proper location. The method to draw text is defined as follows:

public void drawString(String text, int x, int y, int anchor);

This method draws text in the current color, using the current font with its anchor point at (x,y). The definition
of the anchor point must be one of the horizontal constants (LEFT, HCENTER, RIGHT) combined with one of
the vertical constants (TOP, BASELINE, BOTTOM) using the logical OR operator.

Vertical centering of the text is not specified since it is not considered useful, it is hard to specify, and it is bur-
densome to implement. Thus, the VCENTER value is not allowed in the anchor point parameter of text drawing
calls.

The actual position of the bounding box of the text relative to the (x, y) location is determined by the anchor
point. These anchor points occur at named locations along the outer edge of the bounding box. Thus, if f is g's
current font (as returned by g.getFont(), the following calls will all have identical results:

g.drawString(str, x, y, TOP|LEFT);
g.drawString(str, x + f.stringWidth(str)/2, y, TOP|HCENTER);
g.drawString(str, x + f.stringWidth(str), y, TOP|RIGHT);
g.drawString(str, x,

y + f.getBaselinePosition(), BASELINE|LEFT);
g.drawString(str, x + f.stringWidth(str)/2,

y + f.getBaselinePosition(), BASELINE|HCENTER);
g.drawString(str, x + f.stringWidth(str),

y + f.getBaselinePosition(), BASELINE|RIGHT);
drawString(str, x,

y + f.getHeight(), BOTTOM|LEFT);
drawString(str, x + f.stringWidth(str)/2,

y + f.getHeight(), BOTTOM|HCENTER);
drawString(str, x + f.stringWidth(str),

y + f.getHeight(), BOTTOM|RIGHT);

For text drawing, the inter-character and inter-line spacing (leading) specified by the font designer are included
as part of the values returned in the public int stringWidth (java.lang.String str) and
public int getHeight () calls of class Font . For example, given the following code:

// (5)
g.drawString(string1+string2, x, y, TOP|LEFT);
// (6)
g.drawString(string1, x, y, TOP|LEFT);
g.drawString(string2, x + f.stringWidth(string1), y, TOP|LEFT);

Code fragments (5) and (6) behave identically. This occurs because f.stringWidth() includes the inter-character
spacing. Similarly, reasonable vertical spacing may be achieved simply by adding the font height to the Y-posi-
tion of subsequent lines. For example:

Graphics javax.microedition.lcdui
setValue(int)

224 Mobile Information Device Profile (JSR-37) December 15, 2000

g.drawString(string1, x, y, TOP|LEFT);
g.drawString(string2, x, y + f.fontHeight(), TOP|LEFT);

draws string1 and string2 on separate lines with an appropriate amount of inter-line spacing.

The stringWidth() of the string and the fontHeight() of the font in which it is drawn define the size of the bound-
ing box of a piece of text. As described above, this box includes inter-line and inter-character spacing. The
implementation is required to put this space below and to right of the pixels actually belonging to the characters
drawn. Applications that wish to position graphics closely with respect text (for example, to paint a rectangle
around a string of text) may assume that there is space below and to the right of a string and that there is no
space above and to the left of the string.

Anchor points are also used for positioning of images. Similar to text drawing, the anchor point for an image
specifies the point on the bounding rectangle of the destination that is to positioned at the (x,y) location given in
the graphics request. Unlike text, vertical centering of images is well-defined, and thus the VCENTER value
may be used within the anchor point parameter of image drawing requests. Because images have no notion of a
baseline, the BASELINE value may not be used within the anchor point parameter of image drawing requests.

Member Summary
Fields

int public static final int BASELINE

int public static final int BOTTOM

int public static final int DOTTED

int public static final int HCENTER

int public static final int LEFT

int public static final int RIGHT

int public static final int SOLID

int public static final int TOP

int public static final int VCENTER

Methods
void public void clipRect (int x, int y, int width, int height)

void public void drawArc (int x, int y, int width, int height,
int startAngle, int arcAngle)

void public void drawChar (char character, int x, int y,
int anchor)

void public void drawChars (char[] data, int offset, int length,
int x, int y, int anchor)

void public void drawImage (Image img, int x, int y, int anchor)

void public void drawLine (int x1, int y1, int x2, int y2)

void public void drawRect (int x, int y, int width, int height)

void public void drawRoundRect (int x, int y, int width,
int height, int arcWidth, int arcHeight)

void public void drawString (java.lang.String str, int x, int y,
int anchor)

void public void drawSubstring (java.lang.String str, int offset,
int len, int x, int y, int anchor)

void public void fillArc (int x, int y, int width, int height,
int startAngle, int arcAngle)

void public void fillRect (int x, int y, int width, int height)

void public void fillRoundRect (int x, int y, int width,
int height, int arcWidth, int arcHeight)

int public int getBlueComponent ()

int public int getClipHeight ()

 javax.microedition.lcdui Graphics
BASELINE

December 15, 2000 Mobile Information Device Profile (JSR-37) 225

Fields

BASELINE
public static final int BASELINE

Constant for positioning the anchor point at the baseline of text.

Value 64 is assigned to BASELINE.

BOTTOM
public static final int BOTTOM

Constant for positioning the anchor point of text and images below the text or image.

Value 32 is assigned to BOTTOM.

DOTTED
public static final int DOTTED

Constant for the DOTTED stroke style.

Value 1 is assigned to DOTTED.

int public int getClipWidth ()

int public int getClipX ()

int public int getClipY ()

int public int getColor ()

Font public Font getFont ()

int public int getGrayScale ()

int public int getGreenComponent ()

int public int getRedComponent ()

int public int getStrokeStyle ()

int public int getTranslateX ()

int public int getTranslateY ()

void public void setClip (int x, int y, int width, int height)

void public void setColor (int RGB)

void public void setColor (int red, int green, int blue)

void public void setFont (Font font)

void public void setGrayScale (int value)

void public void setStrokeStyle (int style)

void public void translate (int x, int y)

Member Summary

Graphics javax.microedition.lcdui
HCENTER

226 Mobile Information Device Profile (JSR-37) December 15, 2000

HCENTER
public static final int HCENTER

Constant for centering text and images horizontally around the anchor point

Value 1 is assigned to HCENTER.

LEFT
public static final int LEFT

Constant for positioning the anchor point of text and images to the left of the text or image.

Value 4 is assigned to LEFT.

RIGHT
public static final int RIGHT

Constant for positioning the anchor point of text and images to the right of the text or image.

Value 8 is assigned to RIGHT.

SOLID
public static final int SOLID

Constant for the SOLID stroke style.

Value 0 is assigned to SOLID.

TOP
public static final int TOP

Constant for positioning the anchor point of text and images above the text or image.

Value 16 is assigned to TOP.

VCENTER
public static final int VCENTER

Constant for centering images vertically around the anchor point.

Value 2 is assigned to VCENTER.

 javax.microedition.lcdui Graphics
clipRect(int, int, int, int)

December 15, 2000 Mobile Information Device Profile (JSR-37) 227

Methods

clipRect(int, int, int, int)
public void clipRect (int x, int y, int width, int height)

Intersects the current clip with the specified rectangle. The resulting clipping area is the intersection of the
current clipping area and the specified rectangle. This method can only be used to make the current clip
smaller. To set the current clip larger, use the setClip method. Rendering operations have no effect outside
of the clipping area.

Parameters:
x - the x coordinate of the rectangle to intersect the clip with

y - the y coordinate of the rectangle to intersect the clip with

width - the width of the rectangle to intersect the clip with

height - the height of the rectangle to intersect the clip with

See Also: public void setClip (int x, int y, int width, int height)

drawArc(int, int, int, int, int, int)
public void drawArc (int x, int y, int width, int height, int startAngle, int arcAngle)

Draws the outline of a circular or elliptical arc covering the specified rectangle, using the current color and
stroke style.

The resulting arc begins at startAngle and extends for arcAngle degrees, using the current color.
Angles are interpreted such that 0 degrees is at the 3 o'clock position. A positive value indicates a counter-
clockwise rotation while a negative value indicates a clockwise rotation.

The center of the arc is the center of the rectangle whose origin is (x, y) and whose size is specified by the
width and height arguments.

The resulting arc covers an area width + 1 pixels wide by height + 1 pixels tall. If either width or
height is less than zero, nothing is drawn.

The angles are specified relative to the non-square extents of the bounding rectangle such that 45 degrees
always falls on the line from the center of the ellipse to the upper right corner of the bounding rectangle. As
a result, if the bounding rectangle is noticeably longer in one axis than the other, the angles to the start and
end of the arc segment will be skewed farther along the longer axis of the bounds.

Parameters:
x - the x coordinate of the upper-left corner of the arc to be drawn.

y - the y coordinate of the upper-left corner of the arc to be drawn.

width - the width of the arc to be drawn

height - the height of the arc to be drawn

startAngle - the beginning angle

arcAngle - the angular extent of the arc, relative to the start angle.

See Also: public void fillArc (int x, int y, int width, int height,
int startAngle, int arcAngle)

Graphics javax.microedition.lcdui
drawChar(char, int, int, int)

228 Mobile Information Device Profile (JSR-37) December 15, 2000

drawChar(char, int, int, int)
public void drawChar (char character, int x, int y, int anchor)

Draws the specified character using the current font and color.

Parameters:
character - the character to be drawn

x - the x coordinate of the anchor point

y - the y coordinate of the anchor point

anchor - the anchor point for positioning the text; see anchor points a valid range within the data
array

Throws: IllegalArgumentException - if anchor is not a legal value

See Also: public void drawString (java.lang.String str, int x, int y,
int anchor), public void drawChars (char[] data, int offset,
int length, int x, int y, int anchor)

drawChars(char[], int, int, int, int, int)
public void drawChars (char[] data, int offset, int length, int x, int y, int anchor)

Draws the specified characters using the current font and color.

Parameters:
data - the array of characters to be drawn

offset - the start offset in the data

length - the number of characters to be drawn

x - the x coordinate of the anchor point

y - the y coordinate of the anchor point

anchor - the anchor point for positioning the text; see anchor points

Throws: ArrayIndexOutOfBoundsException - if offset and length do not specify a valid range
within the data array

IllegalArgumentException - if anchor is not a legal value

NullPointerException - if data is null

See Also: public void drawString (java.lang.String str, int x, int y,
int anchor)

drawImage(Image, int, int, int)
public void drawImage (Image img, int x, int y, int anchor)

Draws the specified image by using the anchor point. The image can be drawn in different positions relative
to the anchor point by passing the appropriate position constants. See anchor points.

Parameters:
img - the specified image to be drawn

x - the x coordinate of the anchor point

 javax.microedition.lcdui Graphics
drawLine(int, int, int, int)

December 15, 2000 Mobile Information Device Profile (JSR-37) 229

y - the y coordinate of the anchor point

anchor - the anchor point for positioning the image

Throws: IllegalArgumentException - if anchor is not a legal value

NullPointerException - if img is null

See Also: Image

drawLine(int, int, int, int)
public void drawLine (int x1, int y1, int x2, int y2)

Draws a line between the coordinates (x1,y1) and (x2,y2) using the current color and stroke style.

Parameters:
x1 - the x coordinate of the start of the line

y1 - the y coordinate of the start of the line

x2 - the x coordinate of the end of the line

y2 - the y coordinate of the end of the line

drawRect(int, int, int, int)
public void drawRect (int x, int y, int width, int height)

Draws the outline of the specified rectangle using the current color and stroke style. The resulting rectangle
will cover an area (width + 1) pixels wide by (height + 1) pixels tall. If either width or height is less than
zero, nothing is drawn.

Parameters:
x - the x coordinate of the rectangle to be drawn

y - the y coordinate of the rectangle to be drawn

width - the width of the rectangle to be drawn

height - the height of the rectangle to be drawn

See Also: public void fillRect (int x, int y, int width, int height)

drawRoundRect(int, int, int, int, int, int)
public void drawRoundRect (int x, int y, int width, int height, int arcWidth,

int arcHeight)

Draws the outline of the specified rounded corner rectangle using the current color and stroke style. The
resulting rectangle will cover an area (width + 1) pixels wide by (height + 1) pixels tall. If either width or
height is less than zero, nothing is drawn.

Parameters:
x - the x coordinate of the rectangle to be drawn

y - the y coordinate of the rectangle to be drawn

width - the width of the rectangle to be drawn

height - the height of the rectangle to be drawn

Graphics javax.microedition.lcdui
drawString(String, int, int, int)

230 Mobile Information Device Profile (JSR-37) December 15, 2000

arcWidth - the horizontal diameter of the arc at the four corners

arcHeight - the vertical diameter of the arc at the four corners

See Also: public void fillRoundRect (int x, int y, int width, int height,
int arcWidth, int arcHeight)

drawString(String, int, int, int)
public void drawString (java.lang.String str, int x, int y, int anchor)

Draws the specified String using the current font and color. The x,y position is the position of the anchor
point. See anchor points.

Parameters:
str - the String to be drawn

x - the x coordinate of the anchor point

y - the y coordinate of the anchor point

anchor - the anchor point for positioning the text

Throws: NullPointerException - if str is null

IllegalArgumentException - if anchor is not a legal value

See Also: public void drawChars (char[] data, int offset, int length,
int x, int y, int anchor)

drawSubstring(String, int, int, int, int, int)
public void drawSubstring (java.lang.String str, int offset, int len, int x, int y,

int anchor)

Draws the specified String using the current font and color. The x,y position is the position of the anchor
point. See anchor points.

Parameters:
str - the String to be drawn

offset - zero-based index of first character in the substring

len - length of the substring

x - the x coordinate of the anchor point

y - the y coordinate of the anchor point

anchor - the anchor point for positioning the text

Throws: StringIndexOutOfBoundsException - if offset and length do not specify a valid range
within the String str

IllegalArgumentException - if anchor is not a legal value

NullPointerException - if str is null

See Also: public void drawString (java.lang.String str, int x, int y,
int anchor)

 javax.microedition.lcdui Graphics
fillArc(int, int, int, int, int, int)

December 15, 2000 Mobile Information Device Profile (JSR-37) 231

fillArc(int, int, int, int, int, int)
public void fillArc (int x, int y, int width, int height, int startAngle, int arcAngle)

Fills a circular or elliptical arc covering the specified rectangle.

The resulting arc begins at startAngle and extends for arcAngle degrees. Angles are interpreted such
that 0 degrees is at the 3 o'clock position. A positive value indicates a counter-clockwise rotation while a
negative value indicates a clockwise rotation.

The center of the arc is the center of the rectangle whose origin is (x, y) and whose size is specified by the
width and height arguments.

If either width or height is zero or less, nothing is drawn.

The filled region consists of the "pie wedge" region bounded by the arc segment as if drawn by drawArc(),
the radius extending from the center to this arc at startAngle degrees, and radius extending from the
center to this arc at startAngle + arcAngle degrees.

The angles are specified relative to the non-square extents of the bounding rectangle such that 45 degrees
always falls on the line from the center of the ellipse to the upper right corner of the bounding rectangle. As
a result, if the bounding rectangle is noticeably longer in one axis than the other, the angles to the start and
end of the arc segment will be skewed farther along the longer axis of the bounds.

Parameters:
x - the x coordinate of the upper-left corner of the arc to be filled.

y - the y coordinate of the upper-left corner of the arc to be filled.

width - the width of the arc to be filled

height - the height of the arc to be filled

startAngle - the beginning angle.

arcAngle - the angular extent of the arc, relative to the start angle.

See Also: public void drawArc (int x, int y, int width, int height,
int startAngle, int arcAngle)

fillRect(int, int, int, int)
public void fillRect (int x, int y, int width, int height)

Fills the specified rectangle with the current color. If either width or height is zero or less, nothing is drawn.

Parameters:
x - the x coordinate of the rectangle to be filled

y - the y coordinate of the rectangle to be filled

width - the width of the rectangle to be filled

height - the height of the rectangle to be filled

See Also: public void drawRect (int x, int y, int width, int height)

Graphics javax.microedition.lcdui
fillRoundRect(int, int, int, int, int, int)

232 Mobile Information Device Profile (JSR-37) December 15, 2000

fillRoundRect(int, int, int, int, int, int)
public void fillRoundRect (int x, int y, int width, int height, int arcWidth,

int arcHeight)

Fills the specified rounded corner rectangle with the current color. If either width or height is zero or less,
nothing is drawn.

Parameters:
x - the x coordinate of the rectangle to be filled

y - the y coordinate of the rectangle to be filled

width - the width of the rectangle to be filled

height - the height of the rectangle to be filled

arcWidth - the horizontal diameter of the arc at the four corners

arcHeight - the vertical diameter of the arc at the four corners

See Also: public void drawRoundRect (int x, int y, int width, int height,
int arcWidth, int arcHeight)

getBlueComponent()
public int getBlueComponent ()

Gets the blue component of the current color.

Returns: integer value in range 0-255

See Also: public void setColor (int red, int green, int blue)

getClipHeight()
public int getClipHeight ()

Gets the height of the current clipping area.

Returns: height of the current clipping area.

See Also: public void clipRect (int x, int y, int width, int height),
public void setClip (int x, int y, int width, int height)

getClipWidth()
public int getClipWidth ()

Gets the width of the current clipping area.

Returns: width of the current clipping area.

See Also: public void clipRect (int x, int y, int width, int height),
public void setClip (int x, int y, int width, int height)

 javax.microedition.lcdui Graphics
getClipX()

December 15, 2000 Mobile Information Device Profile (JSR-37) 233

getClipX()
public int getClipX ()

Gets the X offset of the current clipping area, relative to the coordinate system origin of this graphics con-
text. Separating the getClip operation into two methods returning integers is more performance and mem-
ory efficient than one getClip() call returning an object.

Returns: X offset of the current clipping area

See Also: public void clipRect (int x, int y, int width, int height),
public void setClip (int x, int y, int width, int height)

getClipY()
public int getClipY ()

Gets the Y offset of the current clipping area, relative to the coordinate system origin of this graphics con-
text. Separating the getClip operation into two methods returning integers is more performance and mem-
ory efficient than one getClip() call returning an object.

Returns: Y offset of the current clipping area

See Also: public void clipRect (int x, int y, int width, int height),
public void setClip (int x, int y, int width, int height)

getColor()
public int getColor ()

Gets the current color.

Returns: an integer in form 0x00RRGGBB

See Also: public void setColor (int red, int green, int blue)

getFont()
public Font getFont ()

Gets the current font.

Returns: current font

See Also: Font, public void setFont (Font font)

getGrayScale()
public int getGrayScale ()

Gets the current grayscale value of the color being used for rendering operations. If the color was set by set-
GrayScale(), that value is simply returned. If the color was set by one of the methods that allows setting of
the red, green, and blue components, the value returned is computed from the RGB color components (pos-
sibly in a device-specific fashion) that best approximates the brightness of that color.

Returns: integer value in range 0-255

Graphics javax.microedition.lcdui
getGreenComponent()

234 Mobile Information Device Profile (JSR-37) December 15, 2000

getGreenComponent()
public int getGreenComponent ()

Gets the green component of the current color.

Returns: integer value in range 0-255

See Also: public void setColor (int red, int green, int blue)

getRedComponent()
public int getRedComponent ()

Gets the red component of the current color.

Returns: integer value in range 0-255

See Also: public void setColor (int red, int green, int blue)

getStrokeStyle()
public int getStrokeStyle ()

Gets the stroke style used for drawing operations.

Returns: stroke style, SOLID or DOTTED

getTranslateX()
public int getTranslateX ()

Gets the X coordinate of the translated origin of this graphics context.

Returns: X of current origin

getTranslateY()
public int getTranslateY ()

Gets the Y coordinate of the translated origin of this graphics context.

Returns: Y of current origin

setClip(int, int, int, int)
public void setClip (int x, int y, int width, int height)

Sets the current clip to the rectangle specified by the given coordinates. Rendering operations have no
effect outside of the clipping area.

Parameters:
x - the x coordinate of the new clip rectangle

y - the y coordinate of the new clip rectangle

width - the width of the new clip rectangle

 javax.microedition.lcdui Graphics
setColor(int)

December 15, 2000 Mobile Information Device Profile (JSR-37) 235

height - the height of the new clip rectangle

See Also: public void clipRect (int x, int y, int width, int height)

setColor(int)
public void setColor (int RGB)

Sets the current color to the specified RGB values. All subsequent rendering operations will use this speci-
fied color. The RGB value passed in is interpreted with the least significant eight bits giving the blue com-
ponent, the next eight more significant bits giving the green component, and the next eight more significant
bits giving the red component. That is to say, the color component is specified in the form of
0x00RRGGBB. The high order byte of this value is ignored.

Parameters:
RGB - the color being set

setColor(int, int, int)
public void setColor (int red, int green, int blue)

Sets the current color to the specified RGB values. All subsequent rendering operations will use this speci-
fied color.

Parameters:
red - The red component of the color being set in range 0-255.

green - The green component of the color being set in range 0-255.

blue - The blue component of the color being set in range 0-255.

Throws: IllegalArgumentException - if any of the color components are outside of range 0-255.

setFont(Font)
public void setFont (Font font)

Sets the font for all subsequent text rendering operations. If font is null, it is equivalent to set-
Font(Font.getDefaultFont()).

Parameters:
font - the specified font

See Also: Font, public Font getFont (), public void drawString
(java.lang.String str, int x, int y, int anchor), public void
drawChars (char[] data, int offset, int length, int x, int y,
int anchor)

setGrayScale(int)
public void setGrayScale (int value)

Sets the current grayscale to be used for all subsequent rendering operations. For monochrome displays, the
behavior is clear. For color displays, this sets the color for all subsequent drawing operations to be a gray
color equivalent to the value passed in. The value must be in the range 0-255.

Graphics javax.microedition.lcdui
setStrokeStyle(int)

236 Mobile Information Device Profile (JSR-37) December 15, 2000

Parameters:
value - the desired grayscale value

Throws: IllegalArgumentException - if the gray value is out of range

setStrokeStyle(int)
public void setStrokeStyle (int style)

Sets the stroke style used for drawing lines, arcs, rectangles, and rounded rectangles. This does not affect
fill, text, and image operations.

Parameters:
style - can be SOLID or DOTTED

Throws: IllegalArgumentException - if the style is illegal

translate(int, int)
public void translate (int x, int y)

Translates the origin of the graphics context to the point (x, y) in the current coordinate system. All coordi-
nates used in subsequent rendering operations on this graphics context will be relative to this new origin.

The effect of calls to translate() are cumulative. For example, calling translate(1, 2) and then translate(3, 4)
results in a translation of (4, 6).

The application can set an absolute origin (ax, ay) using the following technique:

g.translate(ax - g.getTranslateX(), ay - g.getTranslateY())

Parameters:
x - the x coordinate of the new translation origin

y - the y coordinate of the new translation origin

See Also: public int getTranslateX (), public int getTranslateY ()

December 15, 2000 Mobile Information Device Profile (JSR-37) 237

javax.microedition.lcdui
Image
Syntax
public class Image

javax.microedition.lcdui.Image

Description

The Image class is used to hold graphical image data. Image objects exist independently of the display device.
They exist only in off-screen memory and will not be painted on the display unless an explicit command is
issued by the application (such as within the paint() method of a Canvas) or when an Image object is placed
within a Form screen or an Alert screen and that screen is made current.

Images are either mutable or immutable depending upon how they are created. Immutable images are generally
created by loading image data from resource bundles, from files, or from the network. They may not be modi-
fied once created. Mutable images are created in off-screen memory. The application may paint into them after
having created a Graphics object expressly for this purpose. Images to be placed within Alert, Choice, Form, or
ImageItem objects are required to be immutable because the implementation may use them to update the dis-
play at any time, without notifying the application.

An immutable image may be created from a mutable image through the use of the public static Image
createImage (Image source) method. It is possible to create a mutable copy of an immutable image
using a technique similar to the following:

Image source; // the image to be copied
source = Image.createImage(...);
Image copy = Image.createImage(source.getWidth(), source.getHeight());
Graphics g = copy.getGraphics();
g.drawImage(source, 0, 0, TOP|LEFT);

It is also possible to use this technique to create a copy of a subrectangle of an image, by altering the width and
height parameters of the createImage() call that creates the destination image and by altering the x and y param-
eters of the drawImage() call.

PNG Image Format

Implementations are required to support images stored in the PNG (Portable Network Graphics) format, version
1.0.

Note: The remainder of this section consists of a summary of the minimum set of features required for PNG
conformance, along with some considerations for MIDP implementors and application developers. The infor-
mation about PNG has been condensed from the PNG (Portable Network Graphics) Specification, Version 1.0.
Any discrepancies between this section and the PNG Specification should be resolved in favor of the PNG
Specification.

All of the 'critical' chunks specified by PNG must be supported. The paragraphs below describe these critical
chunks.

Image javax.microedition.lcdui
translate(int, int)

238 Mobile Information Device Profile (JSR-37) December 15, 2000

The IHDR chunk. MIDP devices must handle the following values in the IHDR chunk:

• All positive values of width and height are supported; however, a very large image may not be readable
because of memory constraints.

• All color types are supported, although the appearance of the image will be dependent on the capabilities of
the device's screen. Color types that include alpha channel data are supported; however, the implementation
may ignore all alpha channel information and treat all pixels as opaque.

• All bit depth values for the given color type are supported.
• Compression method 0 (deflate) is the only supported compression method. This is the same compression

method that is used for jar files, and so the decompression (inflate) code may be shared between the jar
decoding and PNG decoding implementations.

• The filter method represents a series of encoding schemes that may be used to optimize compression. The
PNG spec currently defines a single filter method (method 0) that is an adaptive filtering scheme with five
basic filter types. Filtering is essential for optimal compression since it allows the deflate algorithm to
exploit spatial similarities within the image. Therefore, MIDP devices must support all five filter types
defined by filter method 0.

• MIDP devices are required to read PNG images that are encoded with either interlace method 0 (None) or
interlace method 1 (Adam7). Image loading in MIDP is synchronous and cannot be overlapped with image
rendering, and so there is no advantage for an application to use interlace method 1. Support for decoding
interlaced images is required for compatibility with PNG and for the convenience of developers who may
already have interlaced images available.

The PLTE chunk. Palette-based images must be supported.

The IDAT chunk. Image data may be encoded using any of the 5 filter types defined by filter method 0 (None,
Sub, Up, Average, Paeth).

The IEND chunk. This chunk must be found in order for the image to be considered valid.

Ancillary chunk support. PNG defines several 'ancillary' chunks that may be present in a PNG image but are not
critical for image decoding. A MIDP implementation may (but is not required to) support any of these chunks.
The implementation should silently ignore any unsupported ancillary chunks that it encounters. The currently
defined ancillary chunks are:

bKGD cHRM gAMA hIST iCCP iTXt pHYs
sBIT sPLT sRGB tEXt tIME tRNS zTXt

Reference

PNG (Portable Network Graphics) Specification, Version 1.0. W3C Recommendation, October 1, 1996. http://
www.w3.org/TR/REC-png.html. Also available as RFC 2083, http://www.ietf.org/rfc/rfc2083.txt.

Member Summary
Methods

Image public static Image createImage (byte[] imageData,
int imageOffset, int imageLength)

Image public static Image createImage (Image source)

Image public static Image createImage (int width, int height)

Image public static Image createImage (java.lang.String name)

Graphics public Graphics getGraphics ()

int public int getHeight ()

int public int getWidth ()

boolean public boolean isMutable ()

http://www.w3.org/TR/REC-png.html
http://www.w3.org/TR/REC-png.html
http://www.ietf.org/rfc/rfc2083.txt

 javax.microedition.lcdui Image
createImage(byte[], int, int)

December 15, 2000 Mobile Information Device Profile (JSR-37) 239

Methods

createImage(byte[], int, int)
public static Image createImage (byte[] imageData, int imageOffset, int imageLength)

Creates an immutable image which is decoded from the data stored in the specified byte array at the speci-
fied offset and length. The data must be in a self-identifying image file format supported by the implemen-
tation, such as PNG.

The imageoffset and imagelength parameters specify a range of data within the imageData byte array. The
imageOffset parameter specifies the offset into the array of the first data byte to be used. It must therefore
lie within the range [0..(imageData.length-1)]. The imageLength parameter specifies the number of data
bytes to be used. It must be a positive integer and it must not cause the range to extend beyond the end of
the array. That is, it must be true that imageOffset + imageLength <= imageData.length.

This method is intended for use when loading an image from a variety of sources, such as from persistent
storage or from the network.

Parameters:
imageData - the array of image data in a supported image format

imageOffset - the offset of the start of the data in the array

imageLength - the length of the data in the array

Returns: the created image

Throws: ArrayIndexOutOfBoundsException - if imageOffset and imageLength specify an
invalid range

NullPointerException - if imageData is null

IllegalArgumentException - if imageData is incorrectly formatted or otherwise cannot be
decoded

createImage(Image)
public static Image createImage (Image source)

Creates an immutable image from a source image. If the source image is mutable, an immutable copy is
created and returned. If the source image is immutable, the implementation may simply return it without
creating a new image.

This method is useful for placing images drawn off-screen into Alert, Choice, Form, and StringItem
objects. The application can create an off-screen image using the public static Image create-
Image (int width, int height) method, draw into it using a Graphics object obtained with the
public Graphics getGraphics () method, and then create an immutable copy of it with this
method. The immutable copy may then be placed into the Alert, Choice, Form, and StringItem objects.

Parameters:
source - the source image to be copied

Returns: the new, immutable image

Throws: NullPointerException - if source is null

Image javax.microedition.lcdui
createImage(int, int)

240 Mobile Information Device Profile (JSR-37) December 15, 2000

createImage(int, int)
public static Image createImage (int width, int height)

Creates a new, mutable image for off-screen drawing. Every pixel within the newly created image is white.
The width and height of the image must both be greater than zero.

Parameters:
width - the width of the new image, in pixels

height - the height of the new image, in pixels

Returns: the created image

Throws: IllegalArgumentException - if either width or height is zero or less

createImage(String)
public static Image createImage (java.lang.String name)

Creates an immutable image from decoded image data obtained from the named resource. The name
parameter is a resource name as defined by Class.getResourceAsStream(name) .

Parameters:
name - the name of the resource containing the image data in one of the supported image formats

Returns: the created image

Throws: NullPointerException - if name is null

java.io.IOException - if the resource does not exist, the data cannot be loaded, or the image
data cannot be decoded

getGraphics()
public Graphics getGraphics ()

Creates a new Graphics object that renders to this image. This image must be mutable; it is illegal to call
this method on an immutable image. The mutability of an image may be tested with the isMutable()
method.

The newly created Graphics object has the following properties:

• the destination is this Image object;
• the clip region encompasses the entire Image;
• the current color is black;
• the font is the same as the font returned by public static Font getDefaultFont () ;
• the stroke style is public static final int SOLID ; and
• the origin of the coordinate system is located at the upper-left corner of the Image.

The lifetime of Graphics objects created using this method is indefinite. They may be used at any time, by
any thread.

Returns: a Graphics object with this image as its destination

Throws: IllegalStateException - if the image is immutable

 javax.microedition.lcdui Image
getHeight()

December 15, 2000 Mobile Information Device Profile (JSR-37) 241

getHeight()
public int getHeight ()

Gets the height of the image in pixels.

Returns: height of the image

getWidth()
public int getWidth ()

Gets the width of the image in pixels.

Returns: width of the image

isMutable()
public boolean isMutable ()

Check if this image is mutable. Mutable images can be modified by rendering to them through a Graphics
object obtained from the getGraphics() method of this object.

Returns: true if the image is mutable, false otherwise

242 Mobile Information Device Profile (JSR-37) December 15, 2000

javax.microedition.lcdui
ImageItem
Syntax
public class ImageItem extends Item

Item
|
+--javax.microedition.lcdui.ImageItem

Description
A class that provides layout control when Image objects are added to a Form or to an Alert .

Each ImageItem object contains a reference to an Image object. This image must be immutable. (If the image
object were not required to be immutable, the application could paint into it at any time, potentially requiring
the containing Form or Alert to be updated on every graphics call.) See the definition of the Image object for
further details on image mutability how to create immutable images.

The value null may be specified for the image contents of an ImageItem. If this occurs (and if the label is also
null) the ImageItem will occupy no space on the screen.

Each ImageItem object contains a layout field that is combined from the following values: LAYOUT_LEFT,
LAYOUT_RIGHT, LAYOUT_CENTER, LAYOUT_NEWLINE_BEFORE, and
LAYOUT_NEWLINE_AFTER. LAYOUT_LEFT + LAYOUT_RIGHT is equal to LAYOUT_CENTER.
LAYOUT_DEFAULT may be specified, which indicates that the system should use its default layout policy for
this ImageItem. The value of the layout field is merely a hint. Because of device constraints, such as limited
screen size, the implementation may choose to ignore layout directions.

There are some implicit rules on how the layout directives can be combined:

• LAYOUT_DEFAULT cannot not be combined with any other directive. In fact, any other value will over-
ride LAYOUT_DEFAULT since its value is 0.

• LAYOUT_LEFT, LAYOUT_RIGHT and LAYOUT_CENTER are meant to be mutually exclusive.
• It usually makes sense to combine LAYOUT_LEFT, LAYOUT_RIGHT and LAYOUT_CENTER with

LAYOUT_NEWLINE_BEFORE and LAYOUT_NEWLINE_AFTER.

The altText parameter specifies a string to be displayed in place of the image if the image exceeds the capacity
of the display. The altText parameter may be null.

Member Summary
Fields

int public static final int LAYOUT_CENTER

int public static final int LAYOUT_DEFAULT

int public static final int LAYOUT_LEFT

int public static final int LAYOUT_NEWLINE_AFTER

int public static final int LAYOUT_NEWLINE_BEFORE

int public static final int LAYOUT_RIGHT

Constructors
public ImageItem (java.lang.String label, Image img,
int layout, java.lang.String altText)

Methods
String public java.lang.String getAltText ()

 javax.microedition.lcdui ImageItem
LAYOUT_CENTER

December 15, 2000 Mobile Information Device Profile (JSR-37) 243

Fields

LAYOUT_CENTER
public static final int LAYOUT_CENTER

Image should be horizontally centered.

Value 3 is assigned to LAYOUT_CENTER.

LAYOUT_DEFAULT
public static final int LAYOUT_DEFAULT

Use the default formatting of the "container" of the image.

Value 0 is assigned to LAYOUT_DEFAULT.

LAYOUT_LEFT
public static final int LAYOUT_LEFT

Image should be close to left-edge of the drawing area.

Value 1 is assigned to LAYOUT_LEFT.

LAYOUT_NEWLINE_AFTER
public static final int LAYOUT_NEWLINE_AFTER

A new line should be started after the image is drawn.

Value 0x200 is assigned to LAYOUT_DEFAULT.

Image public Image getImage ()

int public int getLayout ()

void public void setAltText (java.lang.String text)

void public void setImage (Image img)

void public void setLayout (int layout)

Inherited Member Summary

Methods inherited from class Item
public java.lang.String getLabel (), public void setLabel (java.lang.String label)

Member Summary

ImageItem javax.microedition.lcdui
LAYOUT_NEWLINE_BEFORE

244 Mobile Information Device Profile (JSR-37) December 15, 2000

LAYOUT_NEWLINE_BEFORE
public static final int LAYOUT_NEWLINE_BEFORE

A new line should be started before the image is drawn.

Value 0x100 is assigned to LAYOUT_NEWLINE_BEFORE.

LAYOUT_RIGHT
public static final int LAYOUT_RIGHT

Image should be close to right-edge of the drawing area.

Value 2 is assigned to LAYOUT_RIGHT.

Constructors

ImageItem(String, Image, int, String)
public ImageItem (java.lang.String label, Image img, int layout,

java.lang.String altText)

Creates a new ImageItem with the given label, image, layout directive, and alternate text string.

Parameters:
label - the label string

img - the image, must be immutable

layout - a combination of layout directives

altText - the text that may be used in place of the image

Throws: IllegalArgumentException - if the image is mutable

IllegalArgumentException - if the layout value is not a legal combination of directives

Methods

getAltText()
public java.lang.String getAltText ()

Gets the text string to be used if the image exceeds the device's capacity to display it.

Returns: the alternate text value, or null if none

 javax.microedition.lcdui ImageItem
getImage()

December 15, 2000 Mobile Information Device Profile (JSR-37) 245

getImage()
public Image getImage ()

Gets the image contained within the ImageItem, or null if there is no contained image.

Returns: image used by the ImageItem

getLayout()
public int getLayout ()

Gets the layout directives used for placing the image.

Returns: a combination of layout directive values

setAltText(String)
public void setAltText (java.lang.String text)

Sets the alternate text of the ImageItem, or null if no alternate text is provided.

Parameters:
text - the new alternate text

setImage(Image)
public void setImage (Image img)

Sets the image object contained within the ImageItem. The image must be immutable. If img is null, the
ImageItem is set to be empty.

Parameters:
img - the new image

Throws: IllegalArgumentException - if the image is mutable

setLayout(int)
public void setLayout (int layout)

Sets the layout directives.

Parameters:
layout - a combination of layout directive values

Throws: IllegalArgumentException - if the value of layout is not a valid combination of layout
directives

246 Mobile Information Device Profile (JSR-37) December 15, 2000

javax.microedition.lcdui
Item
Syntax
public abstract class Item

javax.microedition.lcdui.Item

Direct Known Subclasses: ChoiceGroup, DateField, Gauge, ImageItem, StringItem,
TextField

Description

A superclass for components that can be added to a Form and Alert . All Item objects have a label field,
which is a string that is attached to the item. The label is typically displayed near the component when it is dis-
played within a screen. This means that the implementation tries to keep the label on the same horizontal row
with the item or directly above the item. If the screen is scrolling, the implementation tries to keep the label vis-
ible at the same time with the Item.

In some cases, when the user attempts to interact with an Item, the system will switch to a system-generated
screen where the actual interaction takes places. If this occurs, the label will generally be carried along and dis-
played within this new screen in order to provide the user with some context for the operation. For this reason it
is recommended that applications supply a label to all interactive Item objects. However, this is not required,
and a null value for a label is legal and specifies the absence of a label.

Methods

getLabel()
public java.lang.String getLabel ()

Gets the label of this Item object.

Returns: the label string

setLabel(String)
public void setLabel (java.lang.String label)

Sets the label of the Item. If label is null, specifies that this item has no label.

Parameters:
label - the label string

Member Summary
Methods

String public java.lang.String getLabel ()

void public void setLabel (java.lang.String label)

December 15, 2000 Mobile Information Device Profile (JSR-37) 247

javax.microedition.lcdui
ItemStateListener
Syntax
public interface ItemStateListener

Description

This interface is used by applications which need to receive events that indicate changes in the internal state of
the interactive items within a Form screen.

See Also: public void setItemStateListener (ItemStateListener iListener)

Methods

itemStateChanged(Item)
public void itemStateChanged (Item item)

Called when internal state of an Item has been changed by the user. This happens when the user:

• changes the set of selected values in a ChoiceGroup;
• adjusts the value of an interactive Gauge;
• enters or modifies the value in a TextField; and
• enters a new date or time in a DateField.

It is up to the device to decide when it considers a new value to have been entered into an Item. For exam-
ple, implementations of text editing within a TextField vary greatly from device to device.

In general, it is not expected that the listener will be called after every change is made. However, if an
item's value has been changed, the listener will be called to notify the application of the change before it is
called for a change on another item, and before a command is delivered to the Form's CommandListener.
For implementations that have the concept of an input focus, the listener should be called no later than
when the focus moves away from an item whose state has been changed. The listener should be called only
if the item's value has actually been changed.

The listener is not called if the application changes the value of an interactive item.

Parameters:
item - the item that was changed

Member Summary
Methods

void public void itemStateChanged (Item item)

248 Mobile Information Device Profile (JSR-37) December 15, 2000

javax.microedition.lcdui
List
Syntax
public class List extends Screen implements Choice

Displayable
|
+--Screen

|
+--javax.microedition.lcdui.List

All Implemented Interfaces: Choice

Description

The List class is a Screen containing list of choices. Most of the behavior is common with class
ChoiceGroup and the common API is defined in interface Choice . When a List is present on the display
the user can interact with it indefinitely (for instance, traversing from element to element and possibly scroll-
ing). These traversing and scrolling operations do not cause application-visible events. The system notifies the
application when some Command is fired. The notification of the application is done with public void
commandAction (Command c, Displayable d) .

List, like any Choice, utilizes a dedicated "select" or "go" functionality of the devices. Typically, the select
functionality is distinct from the soft-buttons, but some devices may use soft-buttons for the select. In any case,
the application does not have a mean to set a label for a select key.

In respect to select functionality here are three types of Lists:

• IMPLICIT where select causes immediate notification of the application if there is an
CommandListener registered. The element that has the focus will be selected before any CommandLis-
tener for this List is called. An implicit public static final Command SELECT_COMMAND is a
parameter for the notification.

• EXCLUSIVE where select operation changes the selected element in the list. Application is not notified.
• MULTIPLE where select operation toggles the selected state of the focused Element. Application is not

notified.

IMPLICIT List can be used to construct menus by placing logical commands to elements. In this case no appli-
cation defined Command have to be attached. Application just has to register a CommandListener that is called
when user "selects".

Another use might be implementation of a Screen with a default operation that takes place when "select" is
pressed. For example, the List may contain email headers, and three operations: read, reply, and delete. Read is
consider to be the default operation.

 javax.microedition.lcdui List
itemStateChanged(Item)

December 15, 2000 Mobile Information Device Profile (JSR-37) 249

void initialize() {
myScreen = new List("EMAIL", List.IMPLICIT);
readCommand = new Command("read", Command.SCREEN, 1);
replyCommand = new Command("reply", Command.SCREEN, 1);
deleteCommand = new Command("delete", Command.SCREEN, 1);
myScreen.addCommand(readCommand);
myScreen.addCommand(replyCommand);
myScreen.addCommand(deleteCommand);
myScreen.setCommandListener(this);

}

Because the list is of type IMPLICIT, the select operation also calls the method public void comman-
dAction (Command c, Displayable d) with parameter public static final Command
SELECT_COMMAND . The implementation of commandAction() can now do the obvious thing and start the
read operation:

public void commandAction (Command c, Displayable d) {
if (d == myScreen) {

if (c == readCommand || c == List.SELECT_COMMAND) {
// show the mail to the user

}
// ...

}
}

It should be noted that this kind of default operation must be used carefully and the usability of the resulting
user interface must always kept in mind.

The application can also set the currently selected element(s) prior to displaying the List.

Note: Many of the essential methods have been documented in Choice .

Member Summary
Fields

Command public static final Command SELECT_COMMAND

Constructors
public List (java.lang.String title, int listType)

public List (java.lang.String title, int listType,
java.lang.String[] stringElements, Image[] imageElements)

Methods
int public int append (java.lang.String stringPart,

Image imagePart)

void public void delete (int elementNum)

Image public Image getImage (int elementNum)

int public int getSelectedFlags (boolean[] selectedArray_return)

int public int getSelectedIndex ()

String public java.lang.String getString (int elementNum)

void public void insert (int elementNum,
java.lang.String stringPart, Image imagePart)

boolean public boolean isSelected (int elementNum)

void public void set (int elementNum, java.lang.String stringPart,
Image imagePart)

void public void setSelectedFlags (boolean[] selectedArray)

void public void setSelectedIndex (int elementNum,
boolean selected)

int public int size ()

List javax.microedition.lcdui
SELECT_COMMAND

250 Mobile Information Device Profile (JSR-37) December 15, 2000

Fields

SELECT_COMMAND
public static final Command SELECT_COMMAND

SELECT_COMMAND is a special command that public void commandAction (Command c,
Displayable d) can use to recognize the user did the select operation on a IMPLICIT List. The field
values of SELECT_COMMAND are:
label = "" (an empty string)

type = SCREEN

priority = 0

The application should not use these values for recognizing the SELECT_COMMAND. Instead, object
identities of the Command and Displayable (List) should be used.

Constructors

List(String, int)
public List (java.lang.String title, int listType)

Creates a new, empty List, specifying its title and the type of the list.

Parameters:
title - the screen's title (see Screen)

Inherited Member Summary

Fields inherited from interface Choice
public static final int EXCLUSIVE, public static final int IMPLICIT, public static
final int MULTIPLE

Methods inherited from class Screen
public Ticker getTicker (), public java.lang.String getTitle (), public void set-
Ticker (Ticker ticker), public void setTitle (java.lang.String s)

Methods inherited from class Displayable
public void addCommand (Command cmd), public boolean isShown (), public void remove-
Command (Command cmd), public void setCommandListener (CommandListener l)

 javax.microedition.lcdui List
List(String, int, String[], Image[])

December 15, 2000 Mobile Information Device Profile (JSR-37) 251

listType - one of IMPLICIT, EXCLUSIVE, or MULTIPLE

Throws: IllegalArgumentException - if listType is not one of IMPLICIT, EXCLUSIVE, or
MULTIPLE.

See Also: Choice

List(String, int, String[], Image[])
public List (java.lang.String title, int listType, java.lang.String[] stringElements,

Image[] imageElements)

Creates a new List, specifying its title, the type of the List, and an array of Strings and Images to be used as
its initial contents.

The stringElements array must be non-null and every array element must also be non-null. The length of the
stringElements array determines the number of elements in the List. The imageElements array may be null
to indicate that the List elements have no images. If the imageElements array is non-null, it must be the
same length as the stringElements array. Individual elements of the imageElements array may be null in
order to indicate the absence of an image for the corresponding List element. Any elements present in the
imageElements array must refer to immutable images.

Parameters:
title - the screen's title (see Screen)

listType - one of IMPLICIT, EXCLUSIVE, or MULTIPLE

stringElements - set of strings specifying the string parts of the List elements

imageElements - set of images specifying the image parts of the List elements

Throws: NullPointerException - if stringElements is null

NullPointerException - if the stringElements array contains any null elements

IllegalArgumentException - if the imageElements array is non-null and has a different length
from the stringElements array

IllegalArgumentException - if listType is not one of IMPLICIT, EXCLUSIVE, or
MULTIPLE.

IllegalArgumentException - if any image in the imageElements array is mutable

See Also: public static final int EXCLUSIVE, public static final int
MULTIPLE, public static final int IMPLICIT

Methods

append(String, Image)
public int append (java.lang.String stringPart, Image imagePart)

Specified By: public int append (java.lang.String stringPart,
Image imagePart) in interface Choice

Parameters:
stringPart - the string part of the element to be added

List javax.microedition.lcdui
delete(int)

252 Mobile Information Device Profile (JSR-37) December 15, 2000

imagePart - the image part of the element to be added, or null if there is no image part

Returns: the assigned index of the element

Throws: IllegalArgumentException - if the image is mutable

NullPointerException - if stringPart is null

delete(int)
public void delete (int elementNum)

Specified By: public void delete (int elementNum) in interface Choice

Parameters:
elementNum - the index of the element to be deleted

Throws: IndexOutOfBoundsException - if elementNum is invalid

getImage(int)
public Image getImage (int elementNum)

Specified By: public Image getImage (int elementNum) in interface Choice

Parameters:
elementNum - the number of the element to be queried

Returns: the image part of the element, or null if there is no image

Throws: IndexOutOfBoundsException - if elementNum is invalid

See Also: public java.lang.String getString (int elementNum), public
java.lang.String getString (int elementNum)

getSelectedFlags(boolean[])
public int getSelectedFlags (boolean[] selectedArray_return)

Specified By: public int getSelectedFlags (boolean[] selectedArray_return)
in interface Choice

Parameters:
selectedArray_return - array to contain the results

Returns: the number of selected elements in the Choice

Throws: IllegalArgumentException - if selectedArray_return is shorter than the size of the List

NullPointerException - if selectedArray_return is null

getSelectedIndex()
public int getSelectedIndex ()

Specified By: public int getSelectedIndex () in interface Choice

Returns: index of selected element, or -1 if none

 javax.microedition.lcdui List
getString(int)

December 15, 2000 Mobile Information Device Profile (JSR-37) 253

getString(int)
public java.lang.String getString (int elementNum)

Specified By: public java.lang.String getString (int elementNum) in interface
Choice

Parameters:
elementNum - the index of the element to be queried

Returns: the string part of the element

Throws: IndexOutOfBoundsException - if elementNum is invalid

See Also: public Image getImage (int elementNum)

insert(int, String, Image)
public void insert (int elementNum, java.lang.String stringPart, Image imagePart)

Specified By: public void insert (int elementNum,
java.lang.String stringPart, Image imagePart) in interface Choice

Parameters:
elementNum - the index of the element where insertion is to occur

stringPart - the string part of the element to be inserted

imagePart - the image part of the element to be inserted, or null if there is no image part

Throws: IndexOutOfBoundsException - if elementNum is invalid

IllegalArgumentException - if the image is mutable

NullPointerException - if stringPart is null

isSelected(int)
public boolean isSelected (int elementNum)

Specified By: public boolean isSelected (int elementNum) in interface Choice

Parameters:
elementNum - index to element to be queried

Returns: selection state of the element

Throws: IndexOutOfBoundsException - if elementNum is invalid

set(int, String, Image)
public void set (int elementNum, java.lang.String stringPart, Image imagePart)

Specified By: public void set (int elementNum, java.lang.String stringPart,
Image imagePart) in interface Choice

Parameters:
elementNum - the index of the element to be set

stringPart - the string part of the new element

List javax.microedition.lcdui
setSelectedFlags(boolean[])

254 Mobile Information Device Profile (JSR-37) December 15, 2000

imagePart - the image part of the element, or null if there is no image part

Throws: IndexOutOfBoundsException - if elementNum is invalid

IllegalArgumentException - if the image is mutable

NullPointerException - if stringPart is null

setSelectedFlags(boolean[])
public void setSelectedFlags (boolean[] selectedArray)

Specified By: public void setSelectedFlags (boolean[] selectedArray) in
interface Choice

Parameters:
selectedArray - an array in which the method collect the selection status

Throws: IllegalArgumentException - if selectedArray is shorter than the size of the List

NullPointerException - if selectedArray is null

setSelectedIndex(int, boolean)
public void setSelectedIndex (int elementNum, boolean selected)

Specified By: public void setSelectedIndex (int elementNum,
boolean selected) in interface Choice

Parameters:
elementNum - the index of the element, starting from zero

selected - the state of the element, where true means selected and false means not selected

Throws: IndexOutOfBoundsException - if elementNum is invalid

size()
public int size ()

Specified By: public int size () in interface Choice

Returns: the number of elements in the List

December 15, 2000 Mobile Information Device Profile (JSR-37) 255

javax.microedition.lcdui
Screen
Syntax
public abstract class Screen extends Displayable

Displayable
|
+--javax.microedition.lcdui.Screen

Direct Known Subclasses: Alert, Form, List, TextBox

Description
The common superclass of all high-level user interface classes. Adds optional title and ticker-tape output to the
Displayable class. The contents displayed and their interaction with the user are defined by subclasses.

Using subclass-defined methods, the application may change the contents of a Screen object while it is shown to
the user. If this occurs, and the Screen object is visible, the display will be updated automatically. That is, the
implementation will refresh the display in a timely fashion without waiting for any further action by the applica-
tion. For example, suppose a List object is currently displayed, and every element of the List is visible. If the
application inserts a new element at the beginning of the List, it is displayed immediately, and the other ele-
ments will be rearranged appropriately. There is no need for the application to call another method to refresh the
display.

It is recommended that applications change the contents of a Screen only while it is not visible (that is, while
another Displayable is current). Changing the contents of a Screen while it is visible may result in performance
problems on some devices, and it may also be confusing if the Screen's contents changes while the user is inter-
acting with it.

Member Summary
Methods

Ticker public Ticker getTicker ()

String public java.lang.String getTitle ()

void public void setTicker (Ticker ticker)

void public void setTitle (java.lang.String s)

Inherited Member Summary

Methods inherited from class Displayable
public void addCommand (Command cmd), public boolean isShown (), public void remove-
Command (Command cmd), public void setCommandListener (CommandListener l)

Screen javax.microedition.lcdui
getTicker()

256 Mobile Information Device Profile (JSR-37) December 15, 2000

Methods

getTicker()
public Ticker getTicker ()

Gets the ticker used by this Screen.

Returns: ticker object used, or null if no ticker is present

getTitle()
public java.lang.String getTitle ()

Gets the title of the Screen. Returns null if there is no title.

setTicker(Ticker)
public void setTicker (Ticker ticker)

Set a ticker for use with this Screen, replacing any previous ticker. If null, removes the ticker object from
this screen. The same ticker is may be shared by several Screen objects within an application. This is done
by calling setTicker() on different screens with the same Ticker object. If the Screen is physically visible,
the visible effect should take place no later than immediately after the callback or protected
abstract void startApp () returns back to the implementation.

Parameters:
ticker - the ticker object used on this screen

setTitle(String)
public void setTitle (java.lang.String s)

Sets the title of the Screen. If null is given, removes the title.

If the Screen is physically visible, the visible effect should take place no later than immediately after the
callback or protected abstract void startApp () returns back to the implementation.

Parameters:
s - the new title, or null for no title

December 15, 2000 Mobile Information Device Profile (JSR-37) 257

javax.microedition.lcdui
StringItem
Syntax
public class StringItem extends Item

Item
|
+--javax.microedition.lcdui.StringItem

Description
An item that can contain a string. A StringItem is display-only; the user cannot edit the contents. Both the label
and the textual content of a StringItem may be modified by the application. The visual representation of the
label may differ from that of the textual contents.

Constructors

StringItem(String, String)
public StringItem (java.lang.String label, java.lang.String text)

Creates a new StringItem object with the given label and textual content. Either label or text may be present
or null.

Parameters:
label - the Item label

text - the text contents

Member Summary
Constructors

public StringItem (java.lang.String label,
java.lang.String text)

Methods
String public java.lang.String getText ()

void public void setText (java.lang.String text)

Inherited Member Summary

Methods inherited from class Item
public java.lang.String getLabel (), public void setLabel (java.lang.String label)

StringItem javax.microedition.lcdui
getText()

258 Mobile Information Device Profile (JSR-37) December 15, 2000

Methods

getText()
public java.lang.String getText ()

Gets the text contents of the StringItem, or null if the StringItem is empty.

Returns: a string with the content of the item

setText(String)
public void setText (java.lang.String text)

Sets the text contents of the StringItem. If text is null, the StringItem is set to be empty.

Parameters:
text - the new content

December 15, 2000 Mobile Information Device Profile (JSR-37) 259

javax.microedition.lcdui
TextBox
Syntax
public class TextBox extends Screen

Displayable
|
+--Screen

|
+--javax.microedition.lcdui.TextBox

Description

The TextBox class is a Screen that allows the user to enter and edit text.

A TextBox has a maximum size, which is the maximum number of characters that can be stored in the object at
any time (its capacity). This limit is enforced when the TextBox instance is constructed, when the user is editing
text within the TextBox, as well as when the application program calls methods on the TextBox that modify its
contents. The maximum size is the maximum stored capacity and is unrelated to the number of characters that
may be displayed at any given time. The number of characters displayed and their arrangement into rows and
columns are determined by the device.

The implementation may place a boundary on the maximum size, and the maximum size actually assigned may
be smaller than the application had requested. The value actually assigned will be reflected in the value returned
by public int getMaxSize () . A defensively-written application should compare this value to the
maximum size requested and be prepared to handle cases where they differ.

The text contained within a TextBox may be more than can be displayed at one time. If this is the case, the
implementation will let the user scroll to view and edit any part of the text. This scrolling occurs transparently to
the application.

TextBox has the concept of input constraints that is identical to TextField. The constraints parameters of
methods within the TextBox class use constants defined in the TextField class. See the description of input
constraints in the TextField class for the definition of these constants.

Member Summary
Constructors

public TextBox (java.lang.String title,
java.lang.String text, int maxSize, int constraints)

Methods
void public void delete (int offset, int length)

int public int getCaretPosition ()

int public int getChars (char[] data)

int public int getConstraints ()

int public int getMaxSize ()

String public java.lang.String getString ()

void public void insert (char[] data, int offset, int length,
int position)

void public void insert (java.lang.String src, int position)

void public void setChars (char[] data, int offset, int length)

void public void setConstraints (int constraints)

int public int setMaxSize (int maxSize)

TextBox javax.microedition.lcdui
TextBox(String, String, int, int)

260 Mobile Information Device Profile (JSR-37) December 15, 2000

Constructors

TextBox(String, String, int, int)
public TextBox (java.lang.String title, java.lang.String text, int maxSize,

int constraints)

Creates a new TextBox object with the given title string, initial contents, maximum size in characters, and
constraints. If the text parameter is null, the TextBox is created empty. The maxSize parameter must be
greater than zero.

Parameters:
title - the title text to be shown with the display

text - the initial contents of the text editing area, null may be used to indicate no initial content.

maxSize - the maximum capacity in characters. The implementation may limit boundary maximum
capacity and the actually assigned capacity may me smaller than requested. A defensive application
will test the actually given capacity with public int getMaxSize () .

constraints - see input constraints

Throws: IllegalArgumentException - if maxSize is zero or less

IllegalArgumentException - if the constraints parameter is invalid

IllegalArgumentException - if text is illegal for the specified constraints

IllegalArgumentException - if the length of the string exceeds the requested maximum
capacity or the maximum capacity actually assigned

void public void setString (java.lang.String text)

int public int size ()

Inherited Member Summary

Methods inherited from class Screen
public Ticker getTicker (), public java.lang.String getTitle (), public void set-
Ticker (Ticker ticker), public void setTitle (java.lang.String s)

Methods inherited from class Displayable
public void addCommand (Command cmd), public boolean isShown (), public void remove-
Command (Command cmd), public void setCommandListener (CommandListener l)

Member Summary

 javax.microedition.lcdui TextBox
delete(int, int)

December 15, 2000 Mobile Information Device Profile (JSR-37) 261

Methods

delete(int, int)
public void delete (int offset, int length)

Deletes characters from the TextBox.

Parameters:
offset - the beginning of the region to be deleted

length - the number of characters to be deleted

Throws: StringIndexOutOfBoundsException - if offset and length do not specify a valid range
within the contents of the TextBox

getCaretPosition()
public int getCaretPosition ()

Gets the current input position. For some UIs this may block some time and ask the user about the intended
caret position, on some UIs may just return the caret position.

Returns: the current caret position, 0 if in the beginning.

getChars(char[])
public int getChars (char[] data)

Copies the contents of the TextBox into a character array starting at index zero. Array elements beyond the
characters copied are left unchanged.

Parameters:
data - the character array to receive the value

Returns: the number of characters copied

Throws: ArrayIndexOutOfBoundsException - if the array is too short for the contents

NullPointerException - if data is null

getConstraints()
public int getConstraints ()

Get the current input constraints of the TextBox.

Returns: the current constraints value (see input constraints)

getMaxSize()
public int getMaxSize ()

Returns the maximum size (number of characters) that can be stored in this TextBox.

Returns: the maximum size in characters

TextBox javax.microedition.lcdui
getString()

262 Mobile Information Device Profile (JSR-37) December 15, 2000

getString()
public java.lang.String getString ()

Gets the contents of the TextBox as a string value.

Returns: the current contents

insert(char[], int, int, int)
public void insert (char[] data, int offset, int length, int position)

Inserts a subrange of an array of characters into the contents of the TextBox. The offset and length parame-
ters indicate the subrange of the data array to be used for insertion. Behavior is otherwise identical to pub-
lic void insert (java.lang.String src, int position) .

Parameters:
data - the source of the character data

offset - the beginning of the region of characters to copy

length - the number of characters to copy

position - the position at which insertion is to occur

Throws: ArrayIndexOutOfBoundsException - if offset and length do not specify a valid range
within the data array

IllegalArgumentException - if the resulting contents are illegal for the current input
constraints

IllegalArgumentException - if the insertion would exceed the current maximum capacity

NullPointerException - if data is null

insert(String, int)
public void insert (java.lang.String src, int position)

Inserts a string into the contents of the TextBox. The string is inserted just prior to the character indicated
by the position parameter, where zero specifies the first character of the contents of the TextBox. If
position is less than or equal to zero, the insertion occurs at the beginning of the contents, thus effecting
a prepend operation. If position is greater than or equal to the current size of the contents, the insertion
occurs immediately after the end of the contents, thus effecting an append operation. For example,
text.insert(s, text.size()) always appends the string s to the current contents.

The current size of the contents is increased by the number of inserted characters. The resulting string must
fit within the current maximum capacity.

If the application needs to simulate typing of characters it can determining the location of the current inser-
tion point ("caret") using the with public int getCaretPosition () method. For example,
text.insert(s, text.getCaretPosition()) inserts the string s at the current caret position.

Parameters:
src - the String to be inserted

position - the position at which insertion is to occur

Throws: IllegalArgumentException - if the resulting contents are illegal for the current input
constraints

 javax.microedition.lcdui TextBox
setChars(char[], int, int)

December 15, 2000 Mobile Information Device Profile (JSR-37) 263

IllegalArgumentException - if the insertion would exceed the current maximum capacity

NullPointerException - if src is null

setChars(char[], int, int)
public void setChars (char[] data, int offset, int length)

Sets the contents of the TextBox from a character array, replacing the previous contents. Characters are
copied from the region of the data array starting at array index offset and running for length charac-
ters. If the data array is null, the TextBox is set to be empty and the other parameters are ignored.

Parameters:
data - the source of the character data

offset - the beginning of the region of characters to copy

length - the number of characters to copy

Throws: ArrayIndexOutOfBoundsException - if offset and length do not specify a valid range
within the data array

IllegalArgumentException - if the text is illegal for the current input constraints

IllegalArgumentException - if the text would exceed the current maximum capacity

setConstraints(int)
public void setConstraints (int constraints)

Sets the input constraints of the TextBox. If the current contents of the TextBox do not match the new con-
straints, the contents are set to empty.

Parameters:
constraints - see input constraints

Throws: IllegalArgumentException - if the value of the constraints parameter is invalid

setMaxSize(int)
public int setMaxSize (int maxSize)

Sets the maximum size (number of characters) that can be contained in this TextBox. If the current contents
of the TextBox are larger than maxSize, the contents are truncated to fit.

Parameters:
maxSize - the new maximum size

Returns: assigned maximum capacity - may be smaller than requested.

Throws: IllegalArgumentException - if maxSize is zero or less.

setString(String)
public void setString (java.lang.String text)

Sets the contents of the TextBox as a string value, replacing the previous contents.

TextBox javax.microedition.lcdui
size()

264 Mobile Information Device Profile (JSR-37) December 15, 2000

Parameters:
text - the new value of the TextBox, or null if the TextBox is to be made empty

Throws: IllegalArgumentException - if the text is illegal for the current input constraints

IllegalArgumentException - if the text would exceed the current maximum capacity

size()
public int size ()

Gets the number of characters that are currently stored in this TextBox.

Returns: the number of characters

December 15, 2000 Mobile Information Device Profile (JSR-37) 265

javax.microedition.lcdui
TextField
Syntax
public class TextField extends Item

Item
|
+--javax.microedition.lcdui.TextField

Description
A TextField is an editable text component that may be placed into a Form . It can be given a piece of text that is
used as the initial value.

A TextField has a maximum size, which is the maximum number of characters that can be stored in the object at
any time (its capacity). This limit is enforced when the TextField instance is constructed, when the user is edit-
ing text within the TextField, as well as when the application program calls methods on the TextField that mod-
ify its contents. The maximum size is the maximum stored capacity and is unrelated to the number of characters
that may be displayed at any given time. The number of characters displayed and their arrangement into rows
and columns are determined by the device.

The implementation may place a boundary on the maximum size, and the maximum size actually assigned may
be smaller than the application had requested. The value actually assigned will be reflected in the value returned
by public int getMaxSize () . A defensively-written application should compare this value to the
maximum size requested and be prepared to handle cases where they differ.

Input Constraints

The TextField shares the concept of input constraints with the TextBox object. The different constraints
allow the application to request that the user's input be restricted in a variety of ways. The implementation is
required to restrict the user's input as requested by the application. For example, if the application requests the
NUMERIC constraint on a TextField, the implementation must allow only numeric characters to be entered.

The implementation is not required to do any syntactic validation of the contents of the text object. Applications
must be prepared to perform such checking themselves.

The implementation may provide special formatting for the value entered. For example, a PHONENUMBER
field may be separated and punctuated as appropriate for the phone number conventions in use, grouping the
digits into country code, area code, prefix, etc. Any spaces or punctuation provided are not considered part of
the text field's value. For example, a TextField with the PHONENUMBER constraint might display as follows:

(408) 555-1212

but the value of the field visible to the application would be a string representing a legal phone number like
"4085551212". Note that in some networks a '+' prefix is part of the number and returned as a part of the string.

Member Summary
Fields

int public static final int ANY

int public static final int CONSTRAINT_MASK

int public static final int EMAILADDR

int public static final int NUMERIC

int public static final int PASSWORD

TextField javax.microedition.lcdui
ANY

266 Mobile Information Device Profile (JSR-37) December 15, 2000

Fields

ANY
public static final int ANY

The user is allowed to enter any text.

Constant 0 is assigned to ANY.

CONSTRAINT_MASK
public static final int CONSTRAINT_MASK

The mask value for determining the constraint mode. The application should use the logical AND operation
with a value returned by getConstraints() and CONSTRAINT_MASK in order to retrieve the current con-
straint mode, in order to remove any modifier flags such as the PASSWORD flag.

Constant 0xFFFF is assigned to CONSTRAINT_MASK.

int public static final int PHONENUMBER

int public static final int URL

Constructors
public TextField (java.lang.String label,
java.lang.String text, int maxSize, int constraints)

Methods
void public void delete (int offset, int length)

int public int getCaretPosition ()

int public int getChars (char[] data)

int public int getConstraints ()

int public int getMaxSize ()

String public java.lang.String getString ()

void public void insert (char[] data, int offset, int length,
int position)

void public void insert (java.lang.String src, int position)

void public void setChars (char[] data, int offset, int length)

void public void setConstraints (int constraints)

int public int setMaxSize (int maxSize)

void public void setString (java.lang.String text)

int public int size ()

Inherited Member Summary

Methods inherited from class Item
public java.lang.String getLabel (), public void setLabel (java.lang.String label)

Member Summary

 javax.microedition.lcdui TextField
EMAILADDR

December 15, 2000 Mobile Information Device Profile (JSR-37) 267

EMAILADDR
public static final int EMAILADDR

The user is allowed to enter an e-mail address.

Constant 1 is assigned to EMAILADDDR.

NUMERIC
public static final int NUMERIC

The user is allowed to enter only an integer value. The implementation must restrict the contents to consist
of an optional minus sign followed by an optional string of numerals.

Constant 2 is assigned to NUMERIC.

PASSWORD
public static final int PASSWORD

The text entered must be masked so that the characters typed are not visible. The actual contents of the text
field are not affected, but each character is displayed using a mask character such as "*". The character cho-
sen as the mask character is implementation-dependent. This is useful for entering confidential information
such as passwords or PINs (personal identification numbers).

The PASSWORD modifier can be combined with other input constraints by using the logical OR operator
(|). However, The PASSWORD modifier is nonsensical with some constraint values such as EMAIL-
ADDR, PHONENUMBER, and URL.

Constant 0x10000 is assigned to PASSWORD.

PHONENUMBER
public static final int PHONENUMBER

The user is allowed to enter a phone number. The phone number is a special case, since a phone-based
implementation may be linked to the native phone dialing application. The implementation may automati-
cally start a phone dialer application that is initialized so that pressing a single key would be enough to
make a call. The call must not made automatically without requiring user's confirmation. The exact set of
characters allowed is specific to the device and to the device's network and may include non-numeric char-
acters.

Constant 3 is assigned to PHONENUMBER.

URL
public static final int URL

The user is allowed to enter a URL.

Constant 4 is assigned to URL.

TextField javax.microedition.lcdui
TextField(String, String, int, int)

268 Mobile Information Device Profile (JSR-37) December 15, 2000

Constructors

TextField(String, String, int, int)
public TextField (java.lang.String label, java.lang.String text, int maxSize,

int constraints)

Creates a new TextField object with the given label, initial contents, maximum size in characters, and con-
straints. If the text parameter is null, the TextField is created empty. The maxSize parameter must be
greater than zero.

Parameters:
label - item label

text - the initial contents, or null if the TextField is to be empty

maxSize - the maximum capacity in characters

constraints - see input constraints

Throws: IllegalArgumentException - if maxSize is zero or less

IllegalArgumentException - if the value of the constraints parameter is invalid

IllegalArgumentException - if text is illegal for the specified constraints

IllegalArgumentException - if the length of the string exceeds the requested maximum
capacity or the maximum capacity actually assigned

Methods

delete(int, int)
public void delete (int offset, int length)

Deletes characters from the TextField.

Parameters:
offset - the beginning of the region to be deleted

length - the number of characters to be deleted

Throws: StringIndexOutOfBoundsException - if offset and length do not specify a valid range
within the contents of the TextField

getCaretPosition()
public int getCaretPosition ()

Gets the current input position. For some UIs this may block some time and ask the user about the intended
caret position, on some UIs may just return the caret position.

Returns: the current caret position, 0 if in the beginning.

 javax.microedition.lcdui TextField
getChars(char[])

December 15, 2000 Mobile Information Device Profile (JSR-37) 269

getChars(char[])
public int getChars (char[] data)

Copies the contents of the TextField into a character array starting at index zero. Array elements beyond the
characters copied are left unchanged.

Parameters:
data - the character array to receive the value

Returns: the number of characters copied

Throws: ArrayIndexOutOfBoundsException - if the array is too short for the contents

NullPointerException - if data is null

getConstraints()
public int getConstraints ()

Get the current input constraints of the TextField.

Returns: the current constraints value (see input constraints)

getMaxSize()
public int getMaxSize ()

Returns the maximum size (number of characters) that can be stored in this TextField.

Returns: the maximum size in characters

getString()
public java.lang.String getString ()

Gets the contents of the TextField as a string value.

Returns: the current contents

insert(char[], int, int, int)
public void insert (char[] data, int offset, int length, int position)

Inserts a subrange of an array of characters into the contents of the TextField. The offset and length param-
eters indicate the subrange of the data array to be used for insertion. Behavior is otherwise identical to
public void insert (java.lang.String src, int position) .

Parameters:
data - the source of the character data

offset - the beginning of the region of characters to copy

length - the number of characters to copy

position - the position at which insertion is to occur

Throws: ArrayIndexOutOfBoundsException - if offset and length do not specify a valid range
within the data array

TextField javax.microedition.lcdui
insert(String, int)

270 Mobile Information Device Profile (JSR-37) December 15, 2000

IllegalArgumentException - if the resulting contents are illegal for the current input
constraints

IllegalArgumentException - if the insertion would exceed the current maximum capacity

NullPointerException - if data is null

insert(String, int)
public void insert (java.lang.String src, int position)

Inserts a string into the contents of the TextField. The string is inserted just prior to the character indicated
by the position parameter, where zero specifies the first character of the contents of the TextField. If
position is less than or equal to zero, the insertion occurs at the beginning of the contents, thus effecting
a prepend operation. If position is greater than or equal to the current size of the contents, the insertion
occurs immediately after the end of the contents, thus effecting an append operation. For example,
text.insert(s, text.size()) always appends the string s to the current contents.

The current size of the contents is increased by the number of inserted characters. The resulting string must
fit within the current maximum capacity.

If the application needs to simulate typing of characters it can determining the location of the current inser-
tion point ("caret") using the with public int getCaretPosition () method. For example,
text.insert(s, text.getCaretPosition()) inserts the string s at the current caret position.

Parameters:
src - the String to be inserted

position - the position at which insertion is to occur

Throws: IllegalArgumentException - if the resulting contents are illegal for the current input
constraints

IllegalArgumentException - if the insertion would exceed the current maximum capacity

NullPointerException - if src is null

setChars(char[], int, int)
public void setChars (char[] data, int offset, int length)

Sets the contents of the TextField from a character array, replacing the previous contents. Characters are
copied from the region of the data array starting at array index offset and running for length charac-
ters. If the data array is null, the TextField is set to be empty and the other parameters are ignored.

Parameters:
data - the source of the character data

offset - the beginning of the region of characters to copy

length - the number of characters to copy

Throws: ArrayIndexOutOfBoundsException - if offset and length do not specify a valid range
within the data array

IllegalArgumentException - if the text is illegal for the current input constraints

IllegalArgumentException - if the text would exceed the current maximum capacity

 javax.microedition.lcdui TextField
setConstraints(int)

December 15, 2000 Mobile Information Device Profile (JSR-37) 271

setConstraints(int)
public void setConstraints (int constraints)

Sets the input constraints of the TextField. If the the current contents of the TextField do not match the new
constraints, the contents are set to empty.

Parameters:
constraints - see input constraints

Throws: IllegalArgumentException - if constraints is not any of the ones specified in input
constraints

setMaxSize(int)
public int setMaxSize (int maxSize)

Sets the maximum size (number of characters) that can be contained in this TextField. If the current con-
tents of the TextField are larger than maxSize, the contents are truncated to fit.

Parameters:
maxSize - the new maximum size

Returns: assigned maximum capacity - may be smaller than requested.

Throws: IllegalArgumentException - if maxSize is zero or less.

setString(String)
public void setString (java.lang.String text)

Sets the contents of the TextField as a string value, replacing the previous contents.

Parameters:
text - the new value of the TextField, or null if the TextField is to be made empty

Throws: IllegalArgumentException - if the text is illegal for the current input constraints

IllegalArgumentException - if the text would exceed the current maximum capacity

size()
public int size ()

Gets the number of characters that are currently stored in this TextField.

Returns: number of characters in the TextField

December 15, 2000 Mobile Information Device Profile (JSR-37) 272

javax.microedition.lcdui
Ticker
Syntax
public class Ticker

javax.microedition.lcdui.Ticker

Description

Implements a "ticker-tape," a piece of text that runs continuously across the display. The direction and speed of
scrolling are determined by the implementation. While animating, the ticker string scrolls continuously. That is,
when the string finishes scrolling off the display, the ticker starts over at the beginning of the string.

There is no API provided for starting and stopping the ticker. The application model is that the ticker is always
scrolling continuously. However, the implementation is allowed to pause the scrolling for power consumption
purposes, for example, if the user doesn't interact with the device for a certain period of time. The implementa-
tion should resume scrolling the ticker when the user interacts with the device again.

The same ticker may be shared by several Screen objects. This can be accomplished by calling public void
setTicker (Ticker ticker) on all such screens. Typical usage is for an application to place the same
ticker on all of its screens. When the application switches between two screens that have the same ticker, a
desirable effect is for the ticker to be displayed at the same location on the display and to continue scrolling its
contents at the same position. This gives the illusion of the ticker being attached to the display instead of to each
screen.

An alternative usage model is for the application to use different tickers on different sets of screens or even a
different one on each screen. The ticker is an attribute of the Screen class so that applications may implement
this model without having to update the ticker to be displayed as the user switches among screens.

Constructors

Ticker(String)
public Ticker (java.lang.String str)

Constructs a new Ticker object, given its initial contents string.

Parameters:
str - string to be set for the Ticker

Throws: NullPointerException - if str is null

Member Summary
Constructors

public Ticker (java.lang.String str)

Methods
String public java.lang.String getString ()

void public void setString (java.lang.String str)

 javax.microedition.lcdui Ticker
getString()

December 15, 2000 Mobile Information Device Profile (JSR-37) 273

Methods

getString()
public java.lang.String getString ()

Gets the string currently being scrolled by the ticker.

Returns: string of the ticker

setString(String)
public void setString (java.lang.String str)

Sets the string to be displayed by this ticker. If this ticker is active and is on the display, it immediately
begins showing the new string.

Parameters:
str - string to be set for the Ticker

Throws: NullPointerException - if str is null

Ticker javax.microedition.lcdui
setString(String)

274 Mobile Information Device Profile (JSR-37) December 15, 2000

December 15, 2000 Mobile Information Device Profile (JSR-37) 275

Index

A
addCommand(Command) - javax.microedition.lc-

dui.Alert.addCommand(javax.microedition.lcdui.C
ommand) 155

addCommand(Command) - javax.microedition.lc-
dui.Displayable.addCommand(javax.microedition.l
cdui.Command) 203

addRecord(byte[], int, int) - javax.microedi-
tion.rms.RecordStore.addRecord(byte[], int, int)
104

addRecordListener(RecordListener) - javax.microedi-
tion.rms.RecordStore.addRecordListener(javax.mic
roedition.rms.RecordListener) 105

ALARM - javax.microedition.lcdui.AlertType.ALARM
158

Alert - javax.microedition.lcdui.Alert 153
Alert(String) - javax.microedition.lcdui.Alert.Alert(ja-

va.lang.String) 154
Alert(String, String, Image, AlertType) - javax.micro-

edition.lcdui.Alert.Alert(java.lang.String, ja-
va.lang.String, javax.microedition.lcdui.Image,
javax.microedition.lcdui.AlertType) 155

AlertType - javax.microedition.lcdui.AlertType 158
AlertType() - javax.microedition.lcdui.AlertType.Alert-

Type() 159
ANY - javax.microedition.lcdui.TextField.ANY 266
append(Image) - javax.microedition.lcdui.Form.ap-

pend(javax.microedition.lcdui.Image) 214
append(Item) - javax.microedition.lcdui.Form.ap-

pend(javax.microedition.lcdui.Item) 214
append(String) - javax.microedition.lcdui.Form.ap-

pend(java.lang.String) 215
append(String, Image) - javax.microedition.lc-

dui.Choice.append(java.lang.String, javax.micro-
edition.lcdui.Image) 176

append(String, Image) - javax.microedition.lc-
dui.ChoiceGroup.append(java.lang.String, jav-
ax.microedition.lcdui.Image) 182

append(String, Image) - javax.microedition.lc-
dui.List.append(java.lang.String, javax.microedi-
tion.lcdui.Image) 251

B
BACK - javax.microedition.lcdui.Command.BACK

189
BASELINE - javax.microedition.lcdui.Graphics.BASE-

LINE 225
BOTTOM - javax.microedition.lcdui.Graphics.BOT-

TOM 225

C
callSerially(Runnable) - javax.microedition.lcdui.Dis-

play.callSerially(javax.microedition.lcdui.Runnabl
e) 199

CANCEL - javax.microedition.lcdui.Command.CAN-
CEL 189

cancel() - java.util.Timer.cancel() 78
cancel() - java.util.TimerTask.cancel() 84
Canvas - javax.microedition.lcdui.Canvas 160
Canvas() - javax.microedition.lcdui.Canvas.Canvas()

167
charsWidth(char[], int, int) - javax.microedition.lc-

dui.Font.charsWidth(char[], int, int) 208
charWidth(char) - javax.microedition.lcdui.Font.char-

Width(char) 208
Choice - javax.microedition.lcdui.Choice 174
ChoiceGroup - javax.microedition.lcdui.ChoiceGroup

180
ChoiceGroup(String, int) - javax.microedition.lc-

dui.ChoiceGroup.ChoiceGroup(java.lang.String,
int) 181

ChoiceGroup(String, int, String[], Image[]) - javax.mi-
croedition.lcdui.ChoiceGroup.ChoiceGroup(ja-
va.lang.String, int, java.lang.String[],
javax.microedition.lcdui.Image[]) 181

clipRect(int, int, int, int) - javax.microedition.lc-
dui.Graphics.clipRect(int, int, int, int) 227

closeRecordStore() - javax.microedition.rms.Record-
Store.closeRecordStore() 105

Command - javax.microedition.lcdui.Command 186
Command(String, int, int) - javax.microedition.lc-

dui.Command.Command(java.lang.String, int, int)
191

commandAction(Command, Displayable) - javax.micro-
edition.lcdui.CommandListener.commandAc-
tion(javax.microedition.lcdui.Command,
javax.microedition.lcdui.Displayable) 192

CommandListener - javax.microedition.lcdui.Com-
mandListener 192

compare(byte[], byte[]) - javax.microedition.rms.Re-
cordComparator.compare(byte[], byte[]) 94

CONFIRMATION - javax.microedition.lcdui.Alert-
Type.CONFIRMATION 158

CONSTRAINT_MASK - javax.microedition.lcdui.Tex-
tField.CONSTRAINT_MASK 266

createImage(byte[], int, int) - javax.microedition.lc-
dui.Image.createImage(byte[], int, int) 239

createImage(Image) - javax.microedition.lcdui.Im-
age.createImage(javax.microedition.lcdui.Image)
239

createImage(int, int) - javax.microedition.lcdui.Im-

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

276 Mobile Information Device Profile (JSR-37) December 15, 2000

age.createImage(int, int) 240
createImage(String) - javax.microedition.lcdui.Im-

age.createImage(java.lang.String) 240

D
DATE - javax.microedition.lcdui.DateField.DATE 194
DATE_TIME - javax.microedition.lcdui.Date-

Field.DATE_TIME 194
DateField - javax.microedition.lcdui.DateField 193
DateField(String, int) - javax.microedition.lcdui.Date-

Field.DateField(java.lang.String, int) 194
DateField(String, int, TimeZone) - javax.microedi-

tion.lcdui.DateField.DateField(java.lang.String, int,
java.util.TimeZone) 195

delete(int) - javax.microedition.lcdui.Choice.delete(int)
176

delete(int) - javax.microedition.lcdui.ChoiceGroup.de-
lete(int) 182

delete(int) - javax.microedition.lcdui.Form.delete(int)
215

delete(int) - javax.microedition.lcdui.List.delete(int)
252

delete(int, int) - javax.microedition.lcdui.TextBox.de-
lete(int, int) 261

delete(int, int) - javax.microedition.lcdui.TextField.de-
lete(int, int) 268

deleteRecord(int) - javax.microedition.rms.Record-
Store.deleteRecord(int) 105

deleteRecordStore(String) - javax.microedi-
tion.rms.RecordStore.deleteRecordStore(java.lang.
String) 106

destroy() - javax.microedition.rms.RecordEnumera-
tion.destroy() 96

destroyApp(boolean) - javax.microedi-
tion.midlet.MIDlet.destroyApp(boolean) 126

Display - javax.microedition.lcdui.Display 197
Displayable - javax.microedition.lcdui.Displayable 203
DOTTED - javax.microedition.lcdui.Graphics.DOT-

TED 225
DOWN - javax.microedition.lcdui.Canvas.DOWN 164
drawArc(int, int, int, int, int, int) - javax.microedition.lc-

dui.Graphics.drawArc(int, int, int, int, int, int) 227
drawChar(char, int, int, int) - javax.microedition.lc-

dui.Graphics.drawChar(char, int, int, int) 228
drawChars(char[], int, int, int, int, int) - javax.microedi-

tion.lcdui.Graphics.drawChars(char[], int, int, int,
int, int) 228

drawImage(Image, int, int, int) - javax.microedition.lc-
dui.Graphics.drawImage(javax.microedition.lc-
dui.Image, int, int, int) 228

drawLine(int, int, int, int) - javax.microedition.lc-
dui.Graphics.drawLine(int, int, int, int) 229

drawRect(int, int, int, int) - javax.microedition.lc-

dui.Graphics.drawRect(int, int, int, int) 229
drawRoundRect(int, int, int, int, int, int) - javax.micro-

edition.lcdui.Graphics.drawRoundRect(int, int, int,
int, int, int) 229

drawString(String, int, int, int) - javax.microedition.lc-
dui.Graphics.drawString(java.lang.String, int, int,
int) 230

drawSubstring(String, int, int, int, int, int) - javax.micro-
edition.lcdui.Graphics.drawSubstring(ja-
va.lang.String, int, int, int, int, int) 230

E
EMAILADDR - javax.microedition.lcdui.Text-

Field.EMAILADDR 267
enumerateRecords(RecordFilter, RecordComparator,

boolean) - javax.microedition.rms.Record-
Store.enumerateRecords(javax.microedi-
tion.rms.RecordFilter,
javax.microedition.rms.RecordComparator, bool-
ean) 106

EQUIVALENT - javax.microedition.rms.RecordCom-
parator.EQUIVALENT 93

ERROR - javax.microedition.lcdui.AlertType.ERROR
159

EXCLUSIVE - javax.microedition.lcdui.Choice.EX-
CLUSIVE 175

EXIT - javax.microedition.lcdui.Command.EXIT 189

F
FACE_MONOSPACE - javax.microedition.lc-

dui.Font.FACE_MONOSPACE 206
FACE_PROPORTIONAL - javax.microedition.lc-

dui.Font.FACE_PROPORTIONAL 206
FACE_SYSTEM - javax.microedition.lc-

dui.Font.FACE_SYSTEM 206
fillArc(int, int, int, int, int, int) - javax.microedition.lc-

dui.Graphics.fillArc(int, int, int, int, int, int) 231
fillRect(int, int, int, int) - javax.microedition.lc-

dui.Graphics.fillRect(int, int, int, int) 231
fillRoundRect(int, int, int, int, int, int) - javax.microedi-

tion.lcdui.Graphics.fillRoundRect(int, int, int, int,
int, int) 232

FIRE - javax.microedition.lcdui.Canvas.FIRE 164
FOLLOWS - javax.microedition.rms.RecordCompara-

tor.FOLLOWS 93
Font - javax.microedition.lcdui.Font 205
FOREVER - javax.microedition.lcdui.Alert.FOREVER

154
Form - javax.microedition.lcdui.Form 212
Form(String) - javax.microedition.lcdui.Form.Form(ja-

va.lang.String) 213
Form(String, Item[]) - javax.microedition.lc-

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 Mobile Information Device Profile (JSR-37) 277

dui.Form.Form(java.lang.String, javax.microedi-
tion.lcdui.Item[]) 214

G
GAME_A - javax.microedition.lcdui.Canvas.GAME_A

164
GAME_B - javax.microedition.lcdui.Canvas.GAME_B

164
GAME_C - javax.microedition.lcdui.Canvas.GAME_C

164
GAME_D - javax.microedition.lcdui.Canvas.GAME_D

165
Gauge - javax.microedition.lcdui.Gauge 218
Gauge(String, boolean, int, int) - javax.microedition.lc-

dui.Gauge.Gauge(java.lang.String, boolean, int, int)
219

GET - javax.microedition.io.HttpConnection.GET 140
get(int) - javax.microedition.lcdui.Form.get(int) 215
getAltText() - javax.microedition.lcdui.Image-

Item.getAltText() 244
getAppProperty(String) - javax.microedi-

tion.midlet.MIDlet.getAppProperty(java.lang.Strin
g) 126

getBaselinePosition() - javax.microedition.lc-
dui.Font.getBaselinePosition() 208

getBlueComponent() - javax.microedition.lcdui.Graph-
ics.getBlueComponent() 232

getCaretPosition() - javax.microedition.lcdui.Text-
Box.getCaretPosition() 261

getCaretPosition() - javax.microedition.lcdui.Text-
Field.getCaretPosition() 268

getChars(char[]) - javax.microedition.lcdui.Text-
Box.getChars(char[]) 261

getChars(char[]) - javax.microedition.lcdui.Text-
Field.getChars(char[]) 269

getClipHeight() - javax.microedition.lcdui.Graphics.get-
ClipHeight() 232

getClipWidth() - javax.microedition.lcdui.Graphics.get-
ClipWidth() 232

getClipX() - javax.microedition.lcdui.Graphics.get-
ClipX() 233

getClipY() - javax.microedition.lcdui.Graphics.get-
ClipY() 233

getColor() - javax.microedition.lcdui.Graphics.getCol-
or() 233

getCommandType() - javax.microedition.lcdui.Com-
mand.getCommandType() 191

getConstraints() - javax.microedition.lcdui.TextBox.get-
Constraints() 261

getConstraints() - javax.microedition.lcdui.Text-
Field.getConstraints() 269

getCurrent() - javax.microedition.lcdui.Display.getCur-
rent() 200

getDate() - javax.microedition.io.HttpConnection.get-
Date() 145

getDate() - javax.microedition.lcdui.DateField.getDate()
195

getDefaultFont() - javax.microedition.lcdui.Font.getDe-
faultFont() 208

getDefaultTimeout() - javax.microedition.lc-
dui.Alert.getDefaultTimeout() 155

getDisplay(MIDlet) - javax.microedition.lcdui.Dis-
play.getDisplay(javax.microedition.midlet.MIDlet)
200

getExpiration() - javax.microedition.io.HttpConnec-
tion.getExpiration() 146

getFace() - javax.microedition.lcdui.Font.getFace() 209
getFile() - javax.microedition.io.HttpConnection.get-

File() 146
getFont() - javax.microedition.lcdui.Graphics.getFont()

233
getFont(int, int, int) - javax.microedition.lcdui.Font.get-

Font(int, int, int) 209
getGameAction(int) - javax.microedition.lcdui.Can-

vas.getGameAction(int) 167
getGraphics() - javax.microedition.lcdui.Image.get-

Graphics() 240
getGrayScale() - javax.microedition.lcdui.Graphics.get-

GrayScale() 233
getGreenComponent() - javax.microedition.lc-

dui.Graphics.getGreenComponent() 234
getHeaderField(int) - javax.microedition.io.HttpCon-

nection.getHeaderField(int) 146
getHeaderField(String) - javax.microedition.io.Http-

Connection.getHeaderField(java.lang.String) 146
getHeaderFieldDate(String, long) - javax.microedi-

tion.io.HttpConnection.getHeaderFieldDate(ja-
va.lang.String, long) 146

getHeaderFieldInt(String, int) - javax.microedi-
tion.io.HttpConnection.getHeaderFieldInt(ja-
va.lang.String, int) 147

getHeaderFieldKey(int) - javax.microedition.io.Http-
Connection.getHeaderFieldKey(int) 147

getHeight() - javax.microedition.lcdui.Canvas.getH-
eight() 167

getHeight() - javax.microedition.lcdui.Font.getHeight()
209

getHeight() - javax.microedition.lcdui.Image.getH-
eight() 241

getHost() - javax.microedition.io.HttpConnection.getH-
ost() 147

getImage() - javax.microedition.lcdui.Alert.getImage()
155

getImage() - javax.microedition.lcdui.ImageItem.getIm-
age() 245

getImage(int) - javax.microedition.lcdui.Choice.getIm-
age(int) 176

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

278 Mobile Information Device Profile (JSR-37) December 15, 2000

getImage(int) - javax.microedition.lcdui.Choice-
Group.getImage(int) 182

getImage(int) - javax.microedition.lcdui.List.getIm-
age(int) 252

getInputMode() - javax.microedition.lcdui.Date-
Field.getInputMode() 195

getKeyCode(int) - javax.microedition.lcdui.Canvas.get-
KeyCode(int) 168

getKeyName(int) - javax.microedition.lcdui.Canvas.get-
KeyName(int) 168

getLabel() - javax.microedition.lcdui.Command.getLa-
bel() 191

getLabel() - javax.microedition.lcdui.Item.getLabel()
246

getLastModified() - javax.microedition.io.HttpConnec-
tion.getLastModified() 147

getLastModified() - javax.microedition.rms.Record-
Store.getLastModified() 107

getLayout() - javax.microedition.lcdui.ImageItem.get-
Layout() 245

getMaxSize() - javax.microedition.lcdui.TextBox.get-
MaxSize() 261

getMaxSize() - javax.microedition.lcdui.TextField.get-
MaxSize() 269

getMaxValue() - javax.microedition.lcdui.Gauge.get-
MaxValue() 219

getName() - javax.microedition.rms.RecordStore.get-
Name() 107

getNextRecordID() - javax.microedition.rms.Record-
Store.getNextRecordID() 107

getNumRecords() - javax.microedition.rms.Record-
Store.getNumRecords() 107

getPort() - javax.microedition.io.HttpConnection.get-
Port() 148

getPriority() - javax.microedition.lcdui.Command.getP-
riority() 191

getProtocol() - javax.microedition.io.HttpConnec-
tion.getProtocol() 148

getQuery() - javax.microedition.io.HttpConnec-
tion.getQuery() 148

getRecord(int) - javax.microedition.rms.Record-
Store.getRecord(int) 107

getRecord(int, byte[], int) - javax.microedi-
tion.rms.RecordStore.getRecord(int, byte[], int)
108

getRecordSize(int) - javax.microedition.rms.Record-
Store.getRecordSize(int) 108

getRedComponent() - javax.microedition.lcdui.Graph-
ics.getRedComponent() 234

getRef() - javax.microedition.io.HttpConnection.ge-
tRef() 148

getRequestMethod() - javax.microedition.io.HttpCon-
nection.getRequestMethod() 148

getRequestProperty(String) - javax.microedition.io.Ht-

tpConnection.getRequestProperty(java.lang.String)
148

getResponseCode() - javax.microedition.io.HttpConnec-
tion.getResponseCode() 149

getResponseMessage() - javax.microedition.io.HttpCon-
nection.getResponseMessage() 149

getSelectedFlags(boolean[]) - javax.microedition.lc-
dui.Choice.getSelectedFlags(boolean[]) 177

getSelectedFlags(boolean[]) - javax.microedition.lc-
dui.ChoiceGroup.getSelectedFlags(boolean[]) 183

getSelectedFlags(boolean[]) - javax.microedition.lc-
dui.List.getSelectedFlags(boolean[]) 252

getSelectedIndex() - javax.microedition.lc-
dui.Choice.getSelectedIndex() 177

getSelectedIndex() - javax.microedition.lcdui.Choice-
Group.getSelectedIndex() 183

getSelectedIndex() - javax.microedition.lcdui.List.get-
SelectedIndex() 252

getSize() - javax.microedition.lcdui.Font.getSize() 209
getSize() - javax.microedition.rms.RecordStore.get-

Size() 108
getSizeAvailable() - javax.microedition.rms.Record-

Store.getSizeAvailable() 109
getString() - javax.microedition.lcdui.Alert.getString()

156
getString() - javax.microedition.lcdui.TextBox.get-

String() 262
getString() - javax.microedition.lcdui.TextField.get-

String() 269
getString() - javax.microedition.lcdui.Ticker.getString()

273
getString(int) - javax.microedition.lcdui.Choice.get-

String(int) 177
getString(int) - javax.microedition.lcdui.Choice-

Group.getString(int) 183
getString(int) - javax.microedition.lcdui.List.get-

String(int) 253
getStrokeStyle() - javax.microedition.lcdui.Graph-

ics.getStrokeStyle() 234
getStyle() - javax.microedition.lcdui.Font.getStyle()

209
getText() - javax.microedition.lcdui.StringItem.get-

Text() 258
getTicker() - javax.microedition.lcdui.Screen.getTick-

er() 256
getTimeout() - javax.microedition.lcdui.Alert.getTime-

out() 156
getTitle() - javax.microedition.lcdui.Screen.getTitle()

256
getTranslateX() - javax.microedition.lcdui.Graph-

ics.getTranslateX() 234
getTranslateY() - javax.microedition.lcdui.Graph-

ics.getTranslateY() 234
getType() - javax.microedition.lcdui.Alert.getType()

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 Mobile Information Device Profile (JSR-37) 279

156
getURL() - javax.microedition.io.HttpConnec-

tion.getURL() 149
getValue() - javax.microedition.lcdui.Gauge.getValue()

220
getVersion() - javax.microedition.rms.RecordStore.get-

Version() 109
getWidth() - javax.microedition.lcdui.Canvas.get-

Width() 168
getWidth() - javax.microedition.lcdui.Image.getWidth()

241
Graphics - javax.microedition.lcdui.Graphics 221

H
hasNextElement() - javax.microedition.rms.RecordEnu-

meration.hasNextElement() 96
hasPointerEvents() - javax.microedition.lcdui.Can-

vas.hasPointerEvents() 169
hasPointerMotionEvents() - javax.microedition.lc-

dui.Canvas.hasPointerMotionEvents() 169
hasPreviousElement() - javax.microedition.rms.Record-

Enumeration.hasPreviousElement() 96
hasRepeatEvents() - javax.microedition.lcdui.Can-

vas.hasRepeatEvents() 169
HCENTER - javax.microedition.lcdui.Graph-

ics.HCENTER 226
HEAD - javax.microedition.io.HttpConnection.HEAD

140
HELP - javax.microedition.lcdui.Command.HELP 189
hideNotify() - javax.microedition.lcdui.Canvas.hideNo-

tify() 169
HTTP_ACCEPTED - javax.microedition.io.HttpCon-

nection.HTTP_ACCEPTED 140
HTTP_BAD_GATEWAY - javax.microedition.io.Http-

Connection.HTTP_BAD_GATEWAY 140
HTTP_BAD_METHOD - javax.microedition.io.Http-

Connection.HTTP_BAD_METHOD 140
HTTP_BAD_REQUEST - javax.microedition.io.Http-

Connection.HTTP_BAD_REQUEST 140
HTTP_CLIENT_TIMEOUT - javax.microedition.io.Ht-

tpConnection.HTTP_CLIENT_TIMEOUT 141
HTTP_CONFLICT - javax.microedition.io.HttpCon-

nection.HTTP_CONFLICT 141
HTTP_CREATED - javax.microedition.io.HttpConnec-

tion.HTTP_CREATED 141
HTTP_ENTITY_TOO_LARGE - javax.microedi-

tion.io.HttpConnection.HTTP_ENTITY_TOO_LA
RGE 141

HTTP_EXPECT_FAILED - javax.microedition.io.Http-
Connection.HTTP_EXPECT_FAILED 141

HTTP_FORBIDDEN - javax.microedition.io.HttpCon-
nection.HTTP_FORBIDDEN 141

HTTP_GATEWAY_TIMEOUT - javax.microedi-

tion.io.HttpConnection.HTTP_GATEWAY_TIME
OUT 141

HTTP_GONE - javax.microedition.io.HttpConnec-
tion.HTTP_GONE 142

HTTP_INTERNAL_ERROR - javax.microedi-
tion.io.HttpConnection.HTTP_INTERNAL_ERRO
R 142

HTTP_LENGTH_REQUIRED - javax.microedi-
tion.io.HttpConnection.HTTP_LENGTH_REQUIR
ED 142

HTTP_MOVED_PERM - javax.microedition.io.Http-
Connection.HTTP_MOVED_PERM 142

HTTP_MOVED_TEMP - javax.microedition.io.Http-
Connection.HTTP_MOVED_TEMP 142

HTTP_MULT_CHOICE - javax.microedition.io.Http-
Connection.HTTP_MULT_CHOICE 142

HTTP_NO_CONTENT - javax.microedition.io.Http-
Connection.HTTP_NO_CONTENT 142

HTTP_NOT_ACCEPTABLE - javax.microedi-
tion.io.HttpConnection.HTTP_NOT_ACCEPTAB
LE 142

HTTP_NOT_AUTHORITATIVE - javax.microedi-
tion.io.HttpConnection.HTTP_NOT_AUTHORIT
ATIVE 143

HTTP_NOT_FOUND - javax.microedition.io.HttpCon-
nection.HTTP_NOT_FOUND 143

HTTP_NOT_IMPLEMENTED - javax.microedi-
tion.io.HttpConnection.HTTP_NOT_IMPLEMEN
TED 143

HTTP_NOT_MODIFIED - javax.microedition.io.Http-
Connection.HTTP_NOT_MODIFIED 143

HTTP_OK - javax.microedition.io.HttpConnec-
tion.HTTP_OK 143

HTTP_PARTIAL - javax.microedition.io.HttpConnec-
tion.HTTP_PARTIAL 143

HTTP_PAYMENT_REQUIRED - javax.microedi-
tion.io.HttpConnection.HTTP_PAYMENT_REQU
IRED 143

HTTP_PRECON_FAILED - javax.microedition.io.Ht-
tpConnection.HTTP_PRECON_FAILED 143

HTTP_PROXY_AUTH - javax.microedition.io.Http-
Connection.HTTP_PROXY_AUTH 144

HTTP_REQ_TOO_LONG - javax.microedition.io.Http-
Connection.HTTP_REQ_TOO_LONG 144

HTTP_RESET - javax.microedition.io.HttpConnec-
tion.HTTP_RESET 144

HTTP_SEE_OTHER - javax.microedition.io.HttpCon-
nection.HTTP_SEE_OTHER 144

HTTP_TEMP_REDIRECT - javax.microedition.io.Ht-
tpConnection.HTTP_TEMP_REDIRECT 144

HTTP_UNAUTHORIZED - javax.microedition.io.Http-
Connection.HTTP_UNAUTHORIZED 144

HTTP_UNAVAILABLE - javax.microedition.io.Http-
Connection.HTTP_UNAVAILABLE 144

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

280 Mobile Information Device Profile (JSR-37) December 15, 2000

HTTP_UNSUPPORTED_RANGE - javax.microedi-
tion.io.HttpConnection.HTTP_UNSUPPORTED_
RANGE 145

HTTP_UNSUPPORTED_TYPE - javax.microedi-
tion.io.HttpConnection.HTTP_UNSUPPORTED_
TYPE 145

HTTP_USE_PROXY - javax.microedition.io.HttpCon-
nection.HTTP_USE_PROXY 145

HTTP_VERSION - javax.microedition.io.HttpConnec-
tion.HTTP_VERSION 145

HttpConnection - javax.microedition.io.HttpConnection
133

I
IllegalStateException - java.lang.IllegalStateException

73
IllegalStateException() - java.lang.IllegalStateExcep-

tion.IllegalStateException() 73
IllegalStateException(String) - java.lang.IllegalStateEx-

ception.IllegalStateException(java.lang.String) 74
Image - javax.microedition.lcdui.Image 237
ImageItem - javax.microedition.lcdui.ImageItem 242
ImageItem(String, Image, int, String) - javax.microedi-

tion.lcdui.ImageItem.ImageItem(java.lang.String,
javax.microedition.lcdui.Image, int, ja-
va.lang.String) 244

IMPLICIT - javax.microedition.lcdui.Choice.IMPLICIT
176

INFO - javax.microedition.lcdui.AlertType.INFO 159
insert(char[], int, int, int) - javax.microedition.lc-

dui.TextBox.insert(char[], int, int, int) 262
insert(char[], int, int, int) - javax.microedition.lcdui.Tex-

tField.insert(char[], int, int, int) 269
insert(int, Item) - javax.microedition.lcdui.Form.in-

sert(int, javax.microedition.lcdui.Item) 216
insert(int, String, Image) - javax.microedition.lc-

dui.Choice.insert(int, java.lang.String, javax.micro-
edition.lcdui.Image) 178

insert(int, String, Image) - javax.microedition.lc-
dui.ChoiceGroup.insert(int, java.lang.String, jav-
ax.microedition.lcdui.Image) 184

insert(int, String, Image) - javax.microedition.lc-
dui.List.insert(int, java.lang.String, javax.microedi-
tion.lcdui.Image) 253

insert(String, int) - javax.microedition.lcdui.TextBox.in-
sert(java.lang.String, int) 262

insert(String, int) - javax.microedition.lcdui.Text-
Field.insert(java.lang.String, int) 270

InvalidRecordIDException - javax.microedition.rms.In-
validRecordIDException 91

InvalidRecordIDException() - javax.microedi-
tion.rms.InvalidRecordIDException.InvalidRecordI
DException() 91

InvalidRecordIDException(String) - javax.microedi-
tion.rms.InvalidRecordIDException.InvalidRecordI
DException(java.lang.String) 92

isBold() - javax.microedition.lcdui.Font.isBold() 210
isColor() - javax.microedition.lcdui.Display.isColor()

200
isDoubleBuffered() - javax.microedition.lcdui.Can-

vas.isDoubleBuffered() 169
isInteractive() - javax.microedition.lcdui.Gauge.isInter-

active() 220
isItalic() - javax.microedition.lcdui.Font.isItalic() 210
isKeptUpdated() - javax.microedition.rms.RecordEnu-

meration.isKeptUpdated() 96
isMutable() - javax.microedition.lcdui.Image.isMut-

able() 241
isPlain() - javax.microedition.lcdui.Font.isPlain() 210
isSelected(int) - javax.microedition.lcdui.Choice.isSe-

lected(int) 178
isSelected(int) - javax.microedition.lcdui.Choice-

Group.isSelected(int) 184
isSelected(int) - javax.microedition.lcdui.List.isSelect-

ed(int) 253
isShown() - javax.microedition.lcdui.Displayable.isS-

hown() 203
isUnderlined() - javax.microedition.lcdui.Font.isUnder-

lined() 210
ITEM - javax.microedition.lcdui.Command.ITEM 190
Item - javax.microedition.lcdui.Item 246
itemStateChanged(Item) - javax.microedition.lc-

dui.ItemStateListener.itemStateChanged(javax.mic
roedition.lcdui.Item) 247

ItemStateListener - javax.microedition.lcdui.ItemState-
Listener 247

J
java.lang - java.lang 71
java.util - java.util 75
javax.microedition.io - javax.microedition.io 131
javax.microedition.lcdui - javax.microedition.lcdui 151
javax.microedition.midlet - javax.microedition.midlet

119
javax.microedition.rms - javax.microedition.rms 85

K
keepUpdated(boolean) - javax.microedition.rms.Re-

cordEnumeration.keepUpdated(boolean) 96
KEY_NUM0 - javax.microedition.lcdui.Can-

vas.KEY_NUM0 165
KEY_NUM1 - javax.microedition.lcdui.Can-

vas.KEY_NUM1 165
KEY_NUM2 - javax.microedition.lcdui.Can-

vas.KEY_NUM2 165

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 Mobile Information Device Profile (JSR-37) 281

KEY_NUM3 - javax.microedition.lcdui.Can-
vas.KEY_NUM3 165

KEY_NUM4 - javax.microedition.lcdui.Can-
vas.KEY_NUM4 165

KEY_NUM5 - javax.microedition.lcdui.Can-
vas.KEY_NUM5 165

KEY_NUM6 - javax.microedition.lcdui.Can-
vas.KEY_NUM6 166

KEY_NUM7 - javax.microedition.lcdui.Can-
vas.KEY_NUM7 166

KEY_NUM8 - javax.microedition.lcdui.Can-
vas.KEY_NUM8 166

KEY_NUM9 - javax.microedition.lcdui.Can-
vas.KEY_NUM9 166

KEY_POUND - javax.microedition.lcdui.Can-
vas.KEY_POUND 166

KEY_STAR - javax.microedition.lcdui.Can-
vas.KEY_STAR 166

keyPressed(int) - javax.microedition.lcdui.Canvas.key-
Pressed(int) 169

keyReleased(int) - javax.microedition.lcdui.Canvas.key-
Released(int) 170

keyRepeated(int) - javax.microedition.lcdui.Can-
vas.keyRepeated(int) 170

L
LAYOUT_CENTER - javax.microedition.lcdui.Image-

Item.LAYOUT_CENTER 243
LAYOUT_DEFAULT - javax.microedition.lcdui.Im-

ageItem.LAYOUT_DEFAULT 243
LAYOUT_LEFT - javax.microedition.lcdui.Image-

Item.LAYOUT_LEFT 243
LAYOUT_NEWLINE_AFTER - javax.microedition.lc-

dui.ImageItem.LAYOUT_NEWLINE_AFTER 243
LAYOUT_NEWLINE_BEFORE - javax.microedi-

tion.lcdui.ImageItem.LAYOUT_NEWLINE_BEF
ORE 244

LAYOUT_RIGHT - javax.microedition.lcdui.Image-
Item.LAYOUT_RIGHT 244

LEFT - javax.microedition.lcdui.Canvas.LEFT 166
LEFT - javax.microedition.lcdui.Graphics.LEFT 226
List - javax.microedition.lcdui.List 248
List(String, int) - javax.microedition.lcdui.List.List(ja-

va.lang.String, int) 250
List(String, int, String[], Image[]) - javax.microedi-

tion.lcdui.List.List(java.lang.String, int, ja-
va.lang.String[], javax.microedition.lcdui.Image[])
251

listRecordStores() - javax.microedition.rms.Record-
Store.listRecordStores() 109

M
matches(byte[]) - javax.microedition.rms.RecordFil-

ter.matches(byte[]) 99
MIDlet - javax.microedition.midlet.MIDlet 125
MIDlet() - javax.microedition.midlet.MIDlet.MIDlet()

126
MIDletStateChangeException - javax.microedi-

tion.midlet.MIDletStateChangeException 129
MIDletStateChangeException() - javax.microedi-

tion.midlet.MIDletStateChangeException.MIDletSt
ateChangeException() 129

MIDletStateChangeException(String) - javax.microedi-
tion.midlet.MIDletStateChangeException.MIDletSt
ateChangeException(java.lang.String) 130

MULTIPLE - javax.microedition.lcdui.Choice.MULTI-
PLE 176

N
nextRecord() - javax.microedition.rms.RecordEnumera-

tion.nextRecord() 97
nextRecordId() - javax.microedition.rms.RecordEnu-

meration.nextRecordId() 97
notifyDestroyed() - javax.microedi-

tion.midlet.MIDlet.notifyDestroyed() 127
notifyPaused() - javax.microedition.midlet.MIDlet.noti-

fyPaused() 127
numColors() - javax.microedition.lcdui.Display.num-

Colors() 200
NUMERIC - javax.microedition.lcdui.TextField.NU-

MERIC 267
numRecords() - javax.microedition.rms.RecordEnumer-

ation.numRecords() 97

O
OK - javax.microedition.lcdui.Command.OK 190
openRecordStore(String, boolean) - javax.microedi-

tion.rms.RecordStore.openRecordStore(ja-
va.lang.String, boolean) 109

P
paint(Graphics) - javax.microedition.lcdui.Can-

vas.paint(javax.microedition.lcdui.Graphics) 170
PASSWORD - javax.microedition.lcdui.Text-

Field.PASSWORD 267
pauseApp() - javax.microedition.midlet.MIDlet.pauseA-

pp() 127
PHONENUMBER - javax.microedition.lcdui.Text-

Field.PHONENUMBER 267
playSound(Display) - javax.microedition.lcdui.Alert-

Type.playSound(javax.microedition.lcdui.Display)

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

282 Mobile Information Device Profile (JSR-37) December 15, 2000

159
pointerDragged(int, int) - javax.microedition.lcdui.Can-

vas.pointerDragged(int, int) 171
pointerPressed(int, int) - javax.microedition.lcdui.Can-

vas.pointerPressed(int, int) 171
pointerReleased(int, int) - javax.microedition.lcdui.Can-

vas.pointerReleased(int, int) 171
POST - javax.microedition.io.HttpConnection.POST

145
PRECEDES - javax.microedition.rms.RecordCompara-

tor.PRECEDES 94
previousRecord() - javax.microedition.rms.RecordEnu-

meration.previousRecord() 98
previousRecordId() - javax.microedition.rms.RecordE-

numeration.previousRecordId() 98

R
rebuild() - javax.microedition.rms.RecordEnumera-

tion.rebuild() 98
recordAdded(RecordStore, int) - javax.microedi-

tion.rms.RecordListener.recordAdded(javax.micro-
edition.rms.RecordStore, int) 101

recordChanged(RecordStore, int) - javax.microedi-
tion.rms.RecordListener.recordChanged(javax.mi-
croedition.rms.RecordStore, int) 101

RecordComparator - javax.microedition.rms.Record-
Comparator 93

recordDeleted(RecordStore, int) - javax.microedi-
tion.rms.RecordListener.recordDeleted(javax.mi-
croedition.rms.RecordStore, int) 101

RecordEnumeration - javax.microedition.rms.RecordE-
numeration 95

RecordFilter - javax.microedition.rms.RecordFilter 99
RecordListener - javax.microedition.rms.RecordListen-

er 101
RecordStore - javax.microedition.rms.RecordStore 103
RecordStoreException - javax.microedition.rms.Record-

StoreException 111
RecordStoreException() - javax.microedi-

tion.rms.RecordStoreException.RecordStoreExcept
ion() 111

RecordStoreException(String) - javax.microedi-
tion.rms.RecordStoreException.RecordStoreExcept
ion(java.lang.String) 112

RecordStoreFullException - javax.microedi-
tion.rms.RecordStoreFullException 113

RecordStoreFullException() - javax.microedi-
tion.rms.RecordStoreFullException.RecordStoreFu
llException() 113

RecordStoreFullException(String) - javax.microedi-
tion.rms.RecordStoreFullException.RecordStoreFu
llException(java.lang.String) 114

RecordStoreNotFoundException - javax.microedi-

tion.rms.RecordStoreNotFoundException 115
RecordStoreNotFoundException() - javax.microedi-

tion.rms.RecordStoreNotFoundException.RecordSt
oreNotFoundException() 115

RecordStoreNotFoundException(String) - javax.micro-
edition.rms.RecordStoreNotFoundException.Recor
dStoreNotFoundException(java.lang.String) 116

RecordStoreNotOpenException - javax.microedi-
tion.rms.RecordStoreNotOpenException 117

RecordStoreNotOpenException() - javax.microedi-
tion.rms.RecordStoreNotOpenException.RecordSt
oreNotOpenException() 117

RecordStoreNotOpenException(String) - javax.micro-
edition.rms.RecordStoreNotOpenException.Record
StoreNotOpenException(java.lang.String) 118

removeCommand(Command) - javax.microedition.lc-
dui.Displayable.removeCommand(javax.microediti
on.lcdui.Command) 204

removeRecordListener(RecordListener) - javax.micro-
edition.rms.RecordStore.removeRecordListener(ja
vax.microedition.rms.RecordListener) 110

repaint() - javax.microedition.lcdui.Canvas.repaint()
172

repaint(int, int, int, int) - javax.microedition.lcdui.Can-
vas.repaint(int, int, int, int) 172

reset() - javax.microedition.rms.RecordEnumeration.re-
set() 98

resumeRequest() - javax.microedition.midlet.MIDlet.re-
sumeRequest() 127

RIGHT - javax.microedition.lcdui.Canvas.RIGHT 167
RIGHT - javax.microedition.lcdui.Graphics.RIGHT

226
run() - java.util.TimerTask.run() 84

S
schedule(TimerTask, Date) - java.util.Timer.sched-

ule(java.util.TimerTask, java.util.Date) 78
schedule(TimerTask, Date, long) - java.util.Tim-

er.schedule(java.util.TimerTask, java.util.Date,
long) 79

schedule(TimerTask, long) - java.util.Timer.sched-
ule(java.util.TimerTask, long) 79

schedule(TimerTask, long, long) - java.util.Timer.sched-
ule(java.util.TimerTask, long, long) 80

scheduleAtFixedRate(TimerTask, Date, long) - ja-
va.util.Timer.scheduleAtFixedRate(java.util.Timer-
Task, java.util.Date, long) 80

scheduleAtFixedRate(TimerTask, long, long) - ja-
va.util.Timer.scheduleAtFixedRate(java.util.Timer-
Task, long, long) 81

scheduledExecutionTime() - java.util.TimerTask.sched-
uledExecutionTime() 84

SCREEN - javax.microedition.lcdui.Com-

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

December 15, 2000 Mobile Information Device Profile (JSR-37) 283

mand.SCREEN 190
Screen - javax.microedition.lcdui.Screen 255
SELECT_COMMAND - javax.microedition.lc-

dui.List.SELECT_COMMAND 250
serviceRepaints() - javax.microedition.lcdui.Canvas.ser-

viceRepaints() 172
set(int, Item) - javax.microedition.lcdui.Form.set(int,

javax.microedition.lcdui.Item) 216
set(int, String, Image) - javax.microedition.lc-

dui.Choice.set(int, java.lang.String, javax.microedi-
tion.lcdui.Image) 178

set(int, String, Image) - javax.microedition.lc-
dui.ChoiceGroup.set(int, java.lang.String, javax.mi-
croedition.lcdui.Image) 184

set(int, String, Image) - javax.microedition.lc-
dui.List.set(int, java.lang.String, javax.microedi-
tion.lcdui.Image) 253

setAltText(String) - javax.microedition.lcdui.Image-
Item.setAltText(java.lang.String) 245

setChars(char[], int, int) - javax.microedition.lcdui.Text-
Box.setChars(char[], int, int) 263

setChars(char[], int, int) - javax.microedition.lcdui.Text-
Field.setChars(char[], int, int) 270

setClip(int, int, int, int) - javax.microedition.lc-
dui.Graphics.setClip(int, int, int, int) 234

setColor(int) - javax.microedition.lcdui.Graphics.set-
Color(int) 235

setColor(int, int, int) - javax.microedition.lcdui.Graph-
ics.setColor(int, int, int) 235

setCommandListener(CommandListener) - javax.micro-
edition.lcdui.Alert.setCommandListener(javax.mic
roedition.lcdui.CommandListener) 156

setCommandListener(CommandListener) - javax.micro-
edition.lcdui.Displayable.setCommandListener(jav
ax.microedition.lcdui.CommandListener) 204

setConstraints(int) - javax.microedition.lcdui.Text-
Box.setConstraints(int) 263

setConstraints(int) - javax.microedition.lcdui.Text-
Field.setConstraints(int) 271

setCurrent(Alert, Displayable) - javax.microedition.lc-
dui.Display.setCurrent(javax.microedition.lc-
dui.Alert, javax.microedition.lcdui.Displayable)
200

setCurrent(Displayable) - javax.microedition.lcdui.Dis-
play.setCurrent(javax.microedition.lcdui.Displayab
le) 201

setDate(Date) - javax.microedition.lcdui.DateField.set-
Date(java.util.Date) 195

setFont(Font) - javax.microedition.lcdui.Graphics.set-
Font(javax.microedition.lcdui.Font) 235

setGrayScale(int) - javax.microedition.lcdui.Graph-
ics.setGrayScale(int) 235

setImage(Image) - javax.microedition.lcdui.Alert.setIm-
age(javax.microedition.lcdui.Image) 156

setImage(Image) - javax.microedition.lcdui.Image-
Item.setImage(javax.microedition.lcdui.Image) 245

setInputMode(int) - javax.microedition.lcdui.Date-
Field.setInputMode(int) 196

setItemStateListener(ItemStateListener) - javax.micro-
edition.lcdui.Form.setItemStateListener(javax.micr
oedition.lcdui.ItemStateListener) 216

setLabel(String) - javax.microedition.lcdui.Item.setLa-
bel(java.lang.String) 246

setLayout(int) - javax.microedition.lcdui.ImageItem.set-
Layout(int) 245

setMaxSize(int) - javax.microedition.lcdui.TextBox.set-
MaxSize(int) 263

setMaxSize(int) - javax.microedition.lcdui.Text-
Field.setMaxSize(int) 271

setMaxValue(int) - javax.microedition.lcdui.Gauge.set-
MaxValue(int) 220

setRecord(int, byte[], int, int) - javax.microedi-
tion.rms.RecordStore.setRecord(int, byte[], int, int)
110

setRequestMethod(String) - javax.microedition.io.Http-
Connection.setRequestMethod(java.lang.String)
149

setRequestProperty(String, String) - javax.microedi-
tion.io.HttpConnection.setRequestProperty(ja-
va.lang.String, java.lang.String) 150

setSelectedFlags(boolean[]) - javax.microedition.lc-
dui.Choice.setSelectedFlags(boolean[]) 179

setSelectedFlags(boolean[]) - javax.microedition.lc-
dui.ChoiceGroup.setSelectedFlags(boolean[]) 185

setSelectedFlags(boolean[]) - javax.microedition.lc-
dui.List.setSelectedFlags(boolean[]) 254

setSelectedIndex(int, boolean) - javax.microedition.lc-
dui.Choice.setSelectedIndex(int, boolean) 179

setSelectedIndex(int, boolean) - javax.microedition.lc-
dui.ChoiceGroup.setSelectedIndex(int, boolean)
185

setSelectedIndex(int, boolean) - javax.microedition.lc-
dui.List.setSelectedIndex(int, boolean) 254

setString(String) - javax.microedition.lcdui.Alert.set-
String(java.lang.String) 156

setString(String) - javax.microedition.lcdui.Text-
Box.setString(java.lang.String) 263

setString(String) - javax.microedition.lcdui.Text-
Field.setString(java.lang.String) 271

setString(String) - javax.microedition.lcdui.Ticker.set-
String(java.lang.String) 273

setStrokeStyle(int) - javax.microedition.lcdui.Graph-
ics.setStrokeStyle(int) 236

setText(String) - javax.microedition.lcdui.String-
Item.setText(java.lang.String) 258

setTicker(Ticker) - javax.microedition.lcdui.Screen.set-
Ticker(javax.microedition.lcdui.Ticker) 256

setTimeout(int) - javax.microedition.lcdui.Alert.setTim-

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

284 Mobile Information Device Profile (JSR-37) December 15, 2000

eout(int) 157
setTitle(String) - javax.microedition.lcdui.Screen.setTi-

tle(java.lang.String) 256
setType(AlertType) - javax.microedition.lcdui.Alert.set-

Type(javax.microedition.lcdui.AlertType) 157
setValue(int) - javax.microedition.lcdui.Gauge.setVal-

ue(int) 220
showNotify() - javax.microedition.lcdui.Can-

vas.showNotify() 173
size() - javax.microedition.lcdui.Choice.size() 179
size() - javax.microedition.lcdui.ChoiceGroup.size()

185
size() - javax.microedition.lcdui.Form.size() 217
size() - javax.microedition.lcdui.List.size() 254
size() - javax.microedition.lcdui.TextBox.size() 264
size() - javax.microedition.lcdui.TextField.size() 271
SIZE_LARGE - javax.microedition.lc-

dui.Font.SIZE_LARGE 206
SIZE_MEDIUM - javax.microedition.lc-

dui.Font.SIZE_MEDIUM 207
SIZE_SMALL - javax.microedition.lc-

dui.Font.SIZE_SMALL 207
SOLID - javax.microedition.lcdui.Graphics.SOLID 226
startApp() - javax.microedition.midlet.MIDlet.star-

tApp() 128
STOP - javax.microedition.lcdui.Command.STOP 190
StringItem - javax.microedition.lcdui.StringItem 257
StringItem(String, String) - javax.microedition.lc-

dui.StringItem.StringItem(java.lang.String, ja-
va.lang.String) 257

stringWidth(String) - javax.microedition.lc-
dui.Font.stringWidth(java.lang.String) 210

STYLE_BOLD - javax.microedition.lc-
dui.Font.STYLE_BOLD 207

STYLE_ITALIC - javax.microedition.lc-
dui.Font.STYLE_ITALIC 207

STYLE_PLAIN - javax.microedition.lc-
dui.Font.STYLE_PLAIN 207

STYLE_UNDERLINED - javax.microedition.lc-
dui.Font.STYLE_UNDERLINED 207

substringWidth(String, int, int) - javax.microedition.lc-
dui.Font.substringWidth(java.lang.String, int, int)
211

T
TextBox - javax.microedition.lcdui.TextBox 259
TextBox(String, String, int, int) - javax.microedition.lc-

dui.TextBox.TextBox(java.lang.String, ja-
va.lang.String, int, int) 260

TextField - javax.microedition.lcdui.TextField 265
TextField(String, String, int, int) - javax.microedition.lc-

dui.TextField.TextField(java.lang.String, ja-
va.lang.String, int, int) 268

Ticker - javax.microedition.lcdui.Ticker 272
Ticker(String) - javax.microedition.lcdui.Ticker.Tick-

er(java.lang.String) 272
TIME - javax.microedition.lcdui.DateField.TIME 194
Timer - java.util.Timer 77
Timer() - java.util.Timer.Timer() 78
TimerTask - java.util.TimerTask 83
TimerTask() - java.util.TimerTask.TimerTask() 83
TOP - javax.microedition.lcdui.Graphics.TOP 226
translate(int, int) - javax.microedition.lcdui.Graph-

ics.translate(int, int) 236

U
UP - javax.microedition.lcdui.Canvas.UP 167
URL - javax.microedition.lcdui.TextField.URL 267

V
VCENTER - javax.microedition.lcdui.Graph-

ics.VCENTER 226

W
WARNING - javax.microedition.lcdui.Alert-

Type.WARNING 159

	Contents
	1. Introduction and Background� 17
	2. Requirements and Scope� 21
	3. Architecture� 25
	4. System Functions� 29
	5. Timers� 31
	6. Networking� 33
	7. Persistent Storage� 37
	8. Applications� 39
	9. User Interface� 49

	List of Tables
	List of Figures
	Preface
	TABLE�P�1 Revision History

	Introduction and Background
	1.1 Introduction
	1.2 Background
	1.3 Document Conventions
	1.3.1 Definitions

	TABLE�1�1 Specification Terms
	1.3.2 Formatting Conventions

	TABLE�1�2 Formatting Conventions

	Requirements and Scope
	2.1 Requirements
	2.1.1 Hardware
	2.1.2 Software

	2.2 Scope

	Architecture
	3.1 Overview
	3.2 Architecture
	FIGURE�3�1 High-Level Architecture View
	TABLE�3�1 MID Application Types

	System Functions
	4.1 Overview
	4.2 System Properties
	TABLE�4�1 System Properties Defined by MIDP
	Property microedition.locale
	4.3 Application Resource Files
	4.4 System.exit
	4.5 Runtime.exit

	Timers
	5.1 Overview
	5.2 Timers
	Classes

	Networking
	6.1 Overview
	FIGURE�6�1 HTTP Network Connection
	6.2 HttpConnection
	6.2.1 HTTP Request Headers
	User-Agent Request Headers

	TABLE�6�1 System Properties Used for User-Agent Request Header
	Example
	6.3 DatagramConnection

	Persistent Storage
	7.1 Overview
	7.2 Record Store
	7.3 Records

	Applications
	8.1 Overview
	8.2 MIDP MIDlet Suite
	8.3 MIDP Execution Environment
	8.4 MIDlet Suite Packaging
	TABLE�8�1 MIDlet Attributes
	8.4.1 JAR Manifest
	8.4.2 MIDlet Classes
	8.5 Application Descriptor
	BNF for Parsing Application Descriptors

	8.6 Application Lifecycle

	TABLE�8�2 Classes in the javax.microedition.midlet Package

	User Interface
	9.1 Overview
	9.2 Structure of the MIDP UI API
	9.2.1 Class Hierarchy
	9.2.2 Class Overview
	9.2.3 Interplay with Application Manager

	9.3 Event Handling
	9.3.1 Abstract Commands
	9.3.2 High-Level API for Events
	9.3.3 Low-Level API for Events
	9.3.4 Interplay of High-Level Commands and the Low-Level API

	9.4 Graphics and Text in Low-Level API
	9.4.1 The Redrawing Scheme
	9.4.2 Drawing Model
	9.4.3 Coordinate System
	9.4.4 Font Support
	9.4.5 Drawing Text and Images

	9.5 A Note on Concurrency
	9.6 Implementation Notes

	Implementation Notes
	A.1 Overview
	A.2 Implementation
	A.2.1 Application Management

	TABLE�A�1 Possible Classes of MIDlets
	TABLE�A�2 Typical MIDlet Management Software Operations

	java.lang
	IllegalStateException

	java.util
	Timer
	TimerTask

	javax.microedition.rms
	InvalidRecordIDException
	RecordComparator
	RecordEnumeration
	RecordFilter
	RecordListener
	RecordStore
	RecordStoreException
	RecordStoreFullException
	RecordStoreNotFoundException
	RecordStoreNotOpenException

	javax.microedition.midlet
	MIDlet
	MIDletStateChangeException

	javax.microedition.io
	HttpConnection

	javax.microedition.lcdui
	Alert
	AlertType
	Canvas
	Choice
	ChoiceGroup
	Command
	CommandListener
	DateField
	Display
	Displayable
	Font
	Form
	Gauge
	Graphics
	Image
	ImageItem
	Item
	ItemStateListener
	List
	Screen
	StringItem
	TextBox
	TextField
	Ticker

	Index

